Skip to main content

Advertisement

Log in

Suppression of TLR4/MyD88/TAK1/NF-κB/COX-2 Signaling Pathway in the Central Nervous System by Bexarotene, a Selective RXR Agonist, Prevents Hyperalgesia in the Lipopolysaccharide-Induced Pain Mouse Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A selective RXR agonist, bexarotene, has been shown to have anti-inflammatory, anti-nociceptive, and neuroprotective effects in several models of numerous neurological diseases characterized by systemic inflammation. The mechanisms underlying these effects remains unknown. To elucidate these mechanisms, we investigated whether the TLR4/MyD88/TAK1/NF-κB/COX-2 signaling pathway in the CNS mediates the effect of bexarotene to prevent hyperalgesia in the LPS-induced inflammatory pain mouse model. The reaction time to thermal stimuli within 30 s was evaluated by the hot plate test in male mice treated with saline, LPS (10 mg/kg), DMSO, and/or bexarotene (0.1, 1, 3, or 10 mg/kg) after 6 h. The latency to the thermal stimulus (18.11 ± 1.36 s) in the LPS-treated mice was significantly decreased by 30% compared with saline-treated mice (25.84 ± 1.99 s). Treatment with bexarotene only at a dose of 10 mg/kg showed a significant increase in the latency by 22.49 ± 1.00 s compared with LPS-treated mice. Bexarotene also prevented the reduction in RXRα protein expression associated with a rise in the expression of TLR4, MyD88, phosphorylated TAK1, NF-κB p65, phosphorylated NF-κB p65, COX-2, and IL-1β proteins, in addition to COX-2 activity and levels of PGE2 and IL-1β in the brains and spinal cords of the LPS-treated animals. Likely, decreased activity of TLR4/MyD88/TAK1/NF-κB/COX-2 signaling pathway in addition to increased pro-inflammatory cytokine formation in the CNS of mice participates in the protective effect of bexarotene against hyperalgesia induced by LPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data used to support the fndings in this study are included within the article.

References

  1. Benson S, Engler H, Schedlowski M, Elsenbruch S (2012) Experimental endotoxemia as a model to study neuroimmune mechanisms in human visceral pain. Ann N Y Acad Sci 1262:108–117. https://doi.org/10.1111/j.1749-6632.2012.06622.x

    Article  CAS  PubMed  Google Scholar 

  2. Miyake K (2007) Innate immune sensing of pathogens and danger signals by cell surface toll-like receptors. Semin Immunol 19:3–10. https://doi.org/10.1016/j.smim.2006.12.002

    Article  CAS  PubMed  Google Scholar 

  3. Leitner GR, Wenzel TJ, Marshall N, Gates EJ, Klegeris A (2019) Targeting toll-like receptor 4 to modulate neuroinflammation in central nervous system disorders. Expert Opin Ther Targets 23:865–882. https://doi.org/10.1080/14728222.2019.1676416

    Article  CAS  PubMed  Google Scholar 

  4. Chen IT, Hsu PH, Hsu WC, Chen NJ, Tseng PH (2015) Polyubiquitination of transforming growth factor β-activated kinase 1 (TAK1) at lysine 562 residue regulates TLR4-mediated JNK and p38 MAPK activation. Sci Rep 5:12300. https://doi.org/10.1038/srep12300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yoon SY, Patel D, Dougherty PM (2012) Minocycline blocks lipopolysaccharide induced hyperalgesia by suppression of microglia but not astrocytes. Neuroscience 221:214–224. https://doi.org/10.1016/j.neuroscience.2012.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Krezel W, Rühl R, de Lera AR (2019) Alternative retinoid X receptor (RXR) ligands. Mol Cell Endocrinol 491:110436. https://doi.org/10.1016/j.mce.2019.04.016

    Article  CAS  PubMed  Google Scholar 

  7. Ito A, Hong C, Rong X, Zhu X, Tarling EJ, Hedde PN, Gratton E, Parks J, Tontonoz P (2015) LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. eLife 4:e08009. https://doi.org/10.7554/eLife.08009

  8. Wagner CE, Jurutka PW, Marshall PA, Heck MC (2017) Retinoid X receptor selective agonists and their synthetic methods. Curr Top Med Chem 7:742–767. https://doi.org/10.2174/1568026616666160617091559

    Article  CAS  Google Scholar 

  9. Ahuja HS, Szanto A, Nagy L, Davies PJ (2003) The retinoid X receptor and its ligants: versatile regulators of metabolic function, cell differentiation and cell death. J Biol Regul Homeost Agents 17:29–45

    CAS  PubMed  Google Scholar 

  10. Lerner V, Miodownik C, Gibel A, Sirota P, Bush I, Elliot H, Benatov R, Ritsner MS (2013) The retinoid X receptor agonist bexarotene relieves positive symptoms of schizophrenia: a 6-week, randomized, double-blind, placebo-controlled multicenter trial. J Clin Psychiatry 74:1224–1232. https://doi.org/10.4088/JCP.12m08160

    Article  CAS  PubMed  Google Scholar 

  11. McFarland K, Spalding TA, Hubbard D, Ma JN, Olsson R, Burstein ES (2013) Low dose bexarotene treatment rescues dopamine neurons and restores behavioral function in models of Parkinson’s disease. ACS Chem Neurosci 4:1430–1438. https://doi.org/10.1021/cn400100f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhong J, Cheng C, Liu H, Huang Z, Wu Y, Teng Z, He J, Zhang H, Wu J, Cao F, Jiang L, Sun X (2017) Bexarotene protects against traumatic brain injury in mice partially through apolipoprotein E. Neuroscience 343:434–448. https://doi.org/10.1016/j.neuroscience.2016.05.033

    Article  CAS  PubMed  Google Scholar 

  13. Gui Y, Duan S, Xiao L, Tang J, Li A (2019) Bexarotene attenuated CCI-induced spinal neuroinflammation and neuropathic pain by targeting MKP-1. J Pain 1526-5900:30607–30602. https://doi.org/10.1016/j.jpain.2019.01.007

    Article  CAS  Google Scholar 

  14. Tunctan B, Kucukkavruk SP, Temiz-Resitoglu M, Guden DS, Sari AN, Sahan-Firat S (2018) Bexarotene, a selective RXRα agonist, reverses hypotension associated with ınflammation and tissue ınjury in a rat model of septic shock. Inflammation 41:337–355. https://doi.org/10.1007/s10753-017-0691-5

    Article  CAS  PubMed  Google Scholar 

  15. Dolunay A, Senol SP, Temiz-Resitoglu M, Guden DS, Sari AN, Sahan-Firat S, Tunctan B (2017) Inhibition of NLRP3 inflammasome prevents LPS-induced inflammatory hyperalgesia in mice: contribution of NF-κB, Caspase-1/11, ASC, NOX, and NOS isoforms. Inflammation 40:366–386. https://doi.org/10.1007/s10753-016-0483-3

    Article  CAS  PubMed  Google Scholar 

  16. Tunctan B, Ozveren E, Korkmaz B, Buharalioglu CK, Tamer L, Degirmenci U, Atik U (2006) Nitric oxide reverses endotoxin-induced inflammatory hyperalgesia via inhibition of prostacyclin production in mice. Pharmacol Res 53:177–192. https://doi.org/10.1016/j.phrs.2005.10.009

    Article  CAS  PubMed  Google Scholar 

  17. Tunctan B, Senol SP, Temiz-Resitoglu M, Guden DS, Sahan-Firat S, Falck JR, Malik KU (2019) Eicosanoids derived from cytochrome P450 pathway of arachidonic acid and inflammatory shock. Prostaglandins Other Lipid Mediat 145:106377. https://doi.org/10.1016/j.prostaglandins.2019.106377

    Article  CAS  PubMed  Google Scholar 

  18. Cahill CM, Dray A, Coderre TJ (1998) Priming enhances endotoxin-induced thermal hyperalgesia and mechanical allodynia in rats. Brain Res 808:13–22. https://doi.org/10.1016/s0006-8993(98)00786-0

    Article  CAS  PubMed  Google Scholar 

  19. Kanaan SA, Safieh-Garabedian B, Haddad JJ, Atweh SF, Abdelnoor AM, Jabbur SJ, Saade NA (1997) Effects of various analgesic and anti-inflammatory drugs on endotoxin-induced hyperalgesia in rats and mice. Pharmacology 54:285–297. https://doi.org/10.1159/000139498

    Article  CAS  PubMed  Google Scholar 

  20. Raghavendra V, Agrewala JN, Kulkarni SK (2000) Melatonin reversal of lipopolysaccharides-induced thermal and behavioral hyperalgesia in mice. Eur J Pharmacol 395:15–21. https://doi.org/10.1016/s0014-2999(00)00196-5

    Article  CAS  PubMed  Google Scholar 

  21. Wu HE, Sun HS, Cheng CW, Terashvili M, Tseng LF (2006) Dextro-naloxone or levo-naloxone reverses the attenuation of morphine antinociception induced by lipopolysaccharide in the mouse spinal cord via a non-opioid mechanism. Eur J Neurosci 24:2575–2580. https://doi.org/10.1111/j.1460-9568.2006.05144.x

    Article  PubMed  Google Scholar 

  22. Tunctan B, Korkmaz B, Yildirim H, Tamer L, Atik U, Buharalioglu CK (2005) Increased production of nitric oxide contributes to renal oxidative stress in endotoxemic rat. Am J Infect Dis 1:111–115. https://doi.org/10.3844/ajidsp.2005.111.115

    Article  CAS  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  24. Cuez T, Korkmaz B, Buharalioglu CK, Sahan-Firat S, Falck J, Malik KU, Tunctan B (2010) A synthetic analogue of 20-HETE, 5,14-HEDGE, reverses endotoxin-induced hypotension via increased 20-HETE levels associated with decreased iNOS protein expression and vasodilator prostanoid production in rats. Basic Clin Pharmacol Toxicol 106:378–388. https://doi.org/10.1111/j.1742-7843.2009.00501.x

    Article  CAS  PubMed  Google Scholar 

  25. Tunctan B, Korkmaz B, Sari AN, Kacan M, Unsal D, Serin MS, Buharalioglu CK, Sahan-Firat S, Cuez T, Schunck WH, Falck JR, Malik KU (2013) 5,14-HEDGE, a 20-HETE mimetic, reverses hypotension and improves survival in a rodent model of septic shock: contribution of soluble epoxide hydrolase, CYP2C23, MEK1/ERK1/2/IKKβ/IκB-α/NF-κB pathway, and proinflammatory cytokine formation. Prostaglandins Other Lipid Mediat 102-103:31–41. https://doi.org/10.1016/j.prostaglandins.2013.01.005

    Article  CAS  PubMed  Google Scholar 

  26. Buharalioglu K, Ozbasoglu O, Korkmaz B, Cuez T, Sahan-Firat S, Yalcin A, Tunctan B (2009) Thalidomide potentiates analgesic effect of COX inhibitors on endotoxin-induced hyperalgesia by modulating TNF-α, PGE and NO synthesis in mice. FASEB J 23:742.4

    Google Scholar 

  27. de Goeij M, van Eijk LT, Vanelderen P, Wilder-Smith OH, Vissers KC, van der Hoeven JG, Kox M, Scheffer GJ, Pickkers P (2013) Systemic inflammation decreases pain threshold in humans in vivo. PLoS One 8:e84159. https://doi.org/10.1371/journal.pone.0084159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abbas M, Rahman S (2016) Effects of alpha-7 nicotinic acetylcholine receptor positive allosteric modulator on lipopolysaccharide-induced neuroinflammatory pain in mice. Eur J Pharmacol 783:85–91. https://doi.org/10.1016/j.ejphar.2016.05.003

    Article  CAS  PubMed  Google Scholar 

  29. Janum S, Nielsen ST, Werner MU, Mehlsen J, Kehlet H, Møller K (2016) Pain perception in healthy volunteers: effect of repeated exposure to experimental systemic inflammation. Innate Immun 22:546–556. https://doi.org/10.1177/1753425916663638

    Article  CAS  PubMed  Google Scholar 

  30. Wang YH, Dong J, Zhang JX, Zhai J, Ge B (2016) Effects of mimic of manganese superoxide dismutase on 2, 4, 6-trinitrobenzene sulfonic acid-induced colitis in rats. Arch Pharm Res 39:1296–1306. https://doi.org/10.1007/s12272-016-0811-z

    Article  CAS  PubMed  Google Scholar 

  31. Laflamme N, Rivest S (2001) Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J 15:155–163. https://doi.org/10.1096/fj.00-0339com

    Article  CAS  PubMed  Google Scholar 

  32. Gosselin D, Rivest S (2008) MyD88 signaling in brain endothelial cells is essential for the neuronal activity and glucocorticoid release during systemic inflammation. Mol Psychiatry 13:480–497. https://doi.org/10.1038/sj.mp.4002122

    Article  CAS  PubMed  Google Scholar 

  33. Huang J, Wang Y, Jiang D, Zhou J, Huang X (2010) The sympathetic-vagal balance against endotoxemia. J Neural Transm 117:729–735. https://doi.org/10.1007/s00702-010-0407-6

    Article  CAS  PubMed  Google Scholar 

  34. Davies MH, Eubanks JP, Powers MR (2006) Microglia and macrophages are increased in response to ischemia-induced retinopathy in the mouse retina. Mol Vis 12:467–477

    CAS  PubMed  Google Scholar 

  35. Zuo Y, Huang L, Enkhjargal B, Xu W, Umut O, Travis ZD, Zhang G, Tang J, Liu F, Zhang JH (2019) Activation of retinoid X receptor by bexarotene attenuates neuroinflammation via PPARγ/SIRT6/FoxO3a pathway after subarachnoid hemorrhage in rats. J Neuroinflammation 16:47. https://doi.org/10.1186/s12974-019-1432-5

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang XK, Su Y, Chen L, Chen F, Liu J, Zhou H (2015) Regulation of the nongenomic actions of retinoid X receptor-α by targeting the coregulator-binding sites. Acta Pharmacol Sin 36:102–112. https://doi.org/10.1038/aps.2014.109

    Article  CAS  PubMed  Google Scholar 

  37. Xu J, Drew PD (2006) 9-Cis-retinoic acid suppresses inflammatory responses of microglia and astrocytes. J Neuroimmunol 171:135–144. https://doi.org/10.1016/j.jneuroim.2005.10.004

    Article  CAS  PubMed  Google Scholar 

  38. Certo M, Endo Y, Ohta K, Sakurada S, Bagetta G, Amantea D (2015) Activation of RXR/PPARγ underlies neuroprotection by bexarotene in ischemic stroke. Pharmacol Res 102:298–307. https://doi.org/10.1016/j.phrs.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  39. Dheer Y, Chitranshi N, Gupta V, Abbasi M, Mirzaei M, You Y, Chung R, Graham SL, Gupta V (2018) Bexarotene modulates retinoid-X-receptor expression and is protective against neurotoxic endoplasmic reticulum stress response and apoptotic pathway activation. Mol Neurobiol 55:9043–9056. https://doi.org/10.1007/s12035-018-1041-9

    Article  CAS  PubMed  Google Scholar 

  40. Janakiram NB, Mohammed A, Qian L, Choi CI, Steele VE, Rao CV (2012) Chemopreventive effects of RXR-selective rexinoid BEX on intestinal neoplasia of Apc (Min/+) mice. Neoplasia 14:159–168. https://doi.org/10.1593/neo.111440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nizamutdinova IT, Guleria RS, Singh AB, Kendall JA Jr, Baker KM, Pan J (2013) Retinoic acid protects cardiomyocytes from high glucose-induced apoptosis through inhibition of NF-κB signaling pathway. J Cell Physiol 228:380–392. https://doi.org/10.1002/jcp.24142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cras A, Politis B, Balitrand N, Darsin-Bettinger D, Boelle PY, Cassinat B, Toubert ME, Chomienne C (2012) BEX via CBP/p300 induces suppression of NF-κB-dependent cell growth and invasion in thyroid cancer. Clin Cancer Res 18:442–453. https://doi.org/10.1158/1078-0432.CCR-11-0510

    Article  CAS  PubMed  Google Scholar 

  43. Badshah H, Ali T, Kim MO (2016) Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway. Sci Rep 6:24493. https://doi.org/10.1038/srep24493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nicrota LC, Loram LR, Watkins MR, Hutchinson MR (2012) Toll-like receptors in chronic pain. Exp Neurol 234:316–329. https://doi.org/10.1016/j.expneurol.2011.09.038

    Article  CAS  Google Scholar 

  45. Sandkühler J (2009) Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 89:707–758. https://doi.org/10.1152/physrev.00025.2008

    Article  CAS  PubMed  Google Scholar 

  46. Kawasaki Y, Zhang L, Cheng JK, Ji RR (2008) Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1β, interleukin-6, and tumor necrosis factor-α in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 28:5189–5194. https://doi.org/10.1523/JNEUROSCI.3338-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schuligo R, Ulcar R, Peskar BA, Amann R (2003) Effect of endotoxin treatment on the expression of cyclooxygenase-2 and prostaglandin synthases in spinal cord, dorsal root ganglia, and skin of rats. Neuroscience 116:1043–1052. https://doi.org/10.1016/s0306-4522(02)00783-2

    Article  Google Scholar 

  48. Lee KM, Kang BS, Lee HL, Son SJ, Hwang SH, Kim DS, Park JS, Cho HJ (2004) Spinal NF-kB activation induces COX-2 upregulation and contributes to inflammatory pain hypersensitivity. Eur J Neurosci 19:3375. https://doi.org/10.1111/j.0953-816X.2004.03441.x

    Article  PubMed  Google Scholar 

  49. Reinold H, Ahmadi S, Depner UB, Layh B, Heindl C, Hamza M, Pahl A, Brune K, Narumiya S, Müller U, Zeilhofer HU (2005) Spinal inflammatory hyperalgesia is mediated by prostaglandin E receptors of the EP2 subtype. J Clin Invest 115:673–679. https://doi.org/10.1172/JCI23618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Abe M, Oka T, Hori T, Takahashi S (2001) Prostanoids in the preoptic hypothalamus mediate systemic lipopolysaccharide-induced hyperalgesia in rats. Brain Res 916:41–49. https://doi.org/10.1016/s0006-8993(01)02861-x

    Article  CAS  PubMed  Google Scholar 

  51. Minami T, Nishihara I, Uda R, Ito S, Hyodo M, Hayaishi O (1994) Characterization of EP-receptor subtypes involved in allodynia and hyperalgesia induced by intrathecal administration of prostaglandin E2 to mice. Br J Pharmacol 112:735. https://doi.org/10.1111/j.1476-5381.1994.tb13139.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao H, Luo F, Li H, Zhang L, Yi Y, Wan J (2014) Antinociceptive effect of tetrandrine on LPS-induced hyperalgesia via the inhibition of IKKb phosphorylation and the COX-2/PGE2 pathway in mice. PLoS One 9:e94586. https://doi.org/10.1371/journal.pone.0094586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fujikawa M, Ibuki T, Matsumura K, Sawa T (2012) Inflammatory hyperalgesia: the role of the prostaglandin system in the spinal cord. Adv Neuroimmune Biol 3:197–207. https://doi.org/10.3233/NIB-2012-012041

    Article  Google Scholar 

  54. Ebersberger A, Grubb BD, Willingale HL, Gardiner NJ, Nebe J, Schaible HG (1999) The intraspinal release of prostaglandin E2 in a model of acute arthritis is accompanied by an up-regulation of cyclo-oxygenase-2 in the spinal cord. Neuroscience 93:775–781. https://doi.org/10.1016/s0306-4522(99)00164-5

    Article  CAS  PubMed  Google Scholar 

  55. Guhring H, Gorig M, Ates M, Coste O, Zeilhofer HU, Pahl A, Rehse K, Brune K (2000) Suppressed injury-induced rise in spinal prostaglandin E 2 production and reduced early thermal hyperalgesia in iNOS deficient mice. J Neurosci 20:6714–6720. https://doi.org/10.1523/JNEUROSCI.20-17-06714.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, Bonventre JV, Woolf CJ (2001) Interleukin-1beta-mediated induction of cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 410:471–475. https://doi.org/10.1038/35068566

    Article  CAS  PubMed  Google Scholar 

  57. He J, Huang Y, Liu H, Sun X, Wu J, Zhang Z, Liu L, Zhou C, Jiang S, Huang Z, Zhong J, Guo Z, Jiang L, Cheng C (2020) Bexarotene promotes microglia/macrophages - specific brain - derived neurotrophic factor expression and axon sprouting after traumatic brain injury. Exp Neurol 334:113462. https://doi.org/10.1016/j.expneurol.2020.113462

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Mersin University for 2018-1-TP3-2814 and The Scientific and Technological Research Council of Turkey for SBAG-217S235. The results of this study were included in the Doctorate Thesis of Pharm. M.S. Sefika Pinar Senol.

Funding

This work was supported by grants from Mersin University for 2018–1-TP3–2814 and The Scientific and Technological Research Council of Turkey for SBAG-217S235.

Author information

Authors and Affiliations

Authors

Contributions

BT and SSPS conceptualized and conceived the research design, carried out the experiments, analyzed the data, and drafted the manuscript. MTR and DSG participated in the experiments and revised the contents of the manuscript. SSF and ANS contributed to the finalizing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bahar Tunctan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Appoval

All animal experiments were authorized by the Mersin University Experimental Animals Local Ethics Committee (Approval Date: April 16, 2018; Decision Number: 2018/20) and carried out according to the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senol, S.P., Temiz-Resitoglu, M., Guden, D.S. et al. Suppression of TLR4/MyD88/TAK1/NF-κB/COX-2 Signaling Pathway in the Central Nervous System by Bexarotene, a Selective RXR Agonist, Prevents Hyperalgesia in the Lipopolysaccharide-Induced Pain Mouse Model. Neurochem Res 46, 624–637 (2021). https://doi.org/10.1007/s11064-020-03197-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03197-7

Keywords

Navigation