Skip to main content

Advertisement

Log in

Structural and functional connections between the autonomic nervous system, hypothalamic–pituitary–adrenal axis, and the immune system: a context and time dependent stress response network

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

The autonomic nervous system (ANS), hypothalamic–pituitary–adrenal (HPA) axis, and immune system are connected anatomically and functionally. These three systems coordinate the central and peripheral response to perceived and systemic stress signals. Both the parasympathetic and sympathetic components of the autonomic nervous system rapidly respond to stress signals, while the hypothalamic–pituitary–adrenal axis and immune system have delayed but prolonged actions. In vitro, animal, and human studies have demonstrated consistent anti-inflammatory effects of parasympathetic activity. In contrast, sympathetic activity exerts context-dependent effects on immune signaling and has been associated with both increased and decreased inflammation. The location of sympathetic action, adrenergic receptor subtype, and timing of activity in relation to disease progression all influence the ultimate impact on immune signaling. This article reviews the brain circuitry, peripheral connections, and chemical messengers that enable communication between the ANS, HPA axis, and immune system. We describe findings of in vitro and animal studies that challenge the immune system with lipopolysaccharide. Next, neuroimmune connections in animal models of chronic inflammatory disease are reviewed. Finally, we discuss how a greater understanding of the ANS-HPA-immune network may lead to the development of novel therapeutic strategies that are focused on modulation of the sympathetic and parasympathetic nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Loewy AD (1998) Viruses as transneuronal tracers for defining neural circuits. Neurosci Biobehav Rev 22(6):679–684

    CAS  PubMed  Google Scholar 

  2. Ugolini G (2020) Viruses in connectomics: viral transneuronal tracers and genetically modified recombinants as neuroscience research tools. J Neurosci Methods 346:108917

    CAS  PubMed  Google Scholar 

  3. Harrison NA et al (2013) Central autonomic network mediates cardiovascular responses to acute inflammation: relevance to increased cardiovascular risk in depression? Brain Behav Immun 31:189–196

    PubMed  PubMed Central  Google Scholar 

  4. Thome J et al (2017) Desynchronization of autonomic response and central autonomic network connectivity in posttraumatic stress disorder. Hum Brain Mapp 38(1):27–40

    PubMed  Google Scholar 

  5. Castle M, Comoli E, Loewy AD (2005) Autonomic brainstem nuclei are linked to the hippocampus. Neuroscience 134(2):657–669

    CAS  PubMed  Google Scholar 

  6. Ondicova K, Mravec B (2010) Multilevel interactions between the sympathetic and parasympathetic nervous systems: a minireview. Endocr Regul 44(2):69–75

    CAS  PubMed  Google Scholar 

  7. Shields RW Jr (1993) Functional anatomy of the autonomic nervous system. J Clin Neurophysiol 10(1):2–13

    PubMed  Google Scholar 

  8. Pembroke P (1971) The anatomy of the vagus nerve in the cervical area in man. J Anat 110(Pt 3):502

    CAS  PubMed  Google Scholar 

  9. Berthoud HR, Neuhuber WL (2000) Functional and chemical anatomy of the afferent vagal system. Auton Neurosci 85(1–3):1–17

    CAS  PubMed  Google Scholar 

  10. Spencer NJ, Hu H (2020) Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol 17(6):338–351

    PubMed  PubMed Central  Google Scholar 

  11. Abbas AK, Lichtman AH, Pillai S (2019) Basic immunology: functions and disorders of the immune system, 4th edn. Elsevier, Philadelphia

    Google Scholar 

  12. Nance DM, Sanders VM (2007) Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav Immun 21(6):736–745

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nance DM, Burns J (1989) Innervation of the spleen in the rat: evidence for absence of afferent innervation. Brain Behav Immun 3(4):281–290

    CAS  PubMed  Google Scholar 

  14. Bellinger DL et al (1993) Acetylcholinesterase staining and choline acetyltransferase activity in the young adult rat spleen: lack of evidence for cholinergic innervation. Brain Behav Immun 7(3):191–204

    CAS  PubMed  Google Scholar 

  15. Schafer MK, Eiden LE, Weihe E (1998) Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. II. The peripheral nervous system. Neuroscience 84(2):361–376

    CAS  PubMed  Google Scholar 

  16. Baron R, Janig W (1988) Sympathetic and afferent neurons projecting in the splenic nerve of the cat. Neurosci Lett 94(1–2):109–113

    CAS  PubMed  Google Scholar 

  17. Panuncio AL et al (1999) Adrenergic innervation in reactive human lymph nodes. J Anat 194(Pt 1):143–146

    PubMed  PubMed Central  Google Scholar 

  18. Huang S et al (2021) Lymph nodes are innervated by a unique population of sensory neurons with immunomodulatory potential. Cell 184(2):441-459 e25

    CAS  PubMed  Google Scholar 

  19. Swanson LW, Kuypers HG (1980) The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J. Comp Neurol 194:555–570

    CAS  PubMed  Google Scholar 

  20. Buller K et al (2001) Dorsal and ventral medullary catecholamine cell groups contribute differentially to systemic interleukin-1beta-induced hypothalamic pituitary adrenal axis responses. Neuroendocrinology 73(2):129–138

    CAS  PubMed  Google Scholar 

  21. Kreier F et al (2006) Tracing from fat tissue, liver, and pancreas: a neuroanatomical framework for the role of the brain in type 2 diabetes. Endocrinology 147(3):1140–1147

    CAS  PubMed  Google Scholar 

  22. Westerhaus MJ, Loewy AD (2001) Central representation of the sympathetic nervous system in the cerebral cortex. Brain Res 903(1–2):117–127

    CAS  PubMed  Google Scholar 

  23. Bering B, Moises HW, Muller WE (1987) Muscarinic cholinergic receptors on intact human lymphocytes. Properties and subclass characterization. Biol Psychiatry 22(12):1451–1458

    CAS  PubMed  Google Scholar 

  24. Benarroch EE (1994) Neuropeptides in the sympathetic system: presence, plasticity, modulation, and implications. Ann Neurol 36(1):6–13

    CAS  PubMed  Google Scholar 

  25. Pongratz G, Straub RH (2014) The sympathetic nervous response in inflammation. Arthritis Res Ther 16(6):504

    PubMed  PubMed Central  Google Scholar 

  26. Schneemilch CE, Bank U (2001) Release of pro- and anti-inflammatory cytokines during different anesthesia procedures. Anaesthesiol Reanim 26(1):4–10

    CAS  PubMed  Google Scholar 

  27. Elenkov IJ et al (2000) The sympathetic nerve–an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52(4):595–638

    CAS  PubMed  Google Scholar 

  28. Powell ND et al (2013) Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via beta-adrenergic induction of myelopoiesis. Proc Natl Acad Sci U S A 110(41):16574–16579

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Valenta LJ, Elias AN, Eisenberg H (1986) ACTH stimulation of adrenal epinephrine and norepinephrine release. Horm Res 23(1):16–20

    CAS  PubMed  Google Scholar 

  30. Toufexis DJ, Walker CD (1996) Noradrenergic facilitation of the adrenocorticotropin response to stress is absent during lactation in the rat. Brain Res 737(1–2):71–77

    CAS  PubMed  Google Scholar 

  31. Ouyang M, Wang S (2000) Dexamethasone attenuates the depressor response induced by neuropeptide Y microinjected into the nucleus tractus solitarius in rats. Br J Pharmacol 129(5):865–870

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Adlan AM et al (2018) Acute hydrocortisone administration reduces cardiovagal baroreflex sensitivity and heart rate variability in young men. J Physiol 596(20):4847–4861

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Agorastos A et al (2019) Vagal effects of endocrine HPA axis challenges on resting autonomic activity assessed by heart rate variability measures in healthy humans. Psychoneuroendocrinology 102:196–203

    CAS  PubMed  Google Scholar 

  34. Wang H et al (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421(6921):384–388

    CAS  PubMed  Google Scholar 

  35. Borovikova LV et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462

    CAS  PubMed  Google Scholar 

  36. Yang YH et al (2015) Acetylcholine inhibits LPS-induced MMP-9 production and cell migration via the alpha7 nAChR-JAK2/STAT3 pathway in RAW264.7 cells. Cell Physiol Biochem 36(5):2025–38

    CAS  PubMed  Google Scholar 

  37. Li W et al (2003) Regulation of noradrenergic function by inflammatory cytokines and depolarization. J Neurochem 86(3):774–783

    CAS  PubMed  Google Scholar 

  38. Kin NW, Sanders VM (2006) It takes nerve to tell T and B cells what to do. J Leukoc Biol 79(6):1093–1104

    CAS  PubMed  Google Scholar 

  39. Spengler RN et al (1990) Stimulation of alpha-adrenergic receptor augments the production of macrophage-derived tumor necrosis factor. J Immunol 145(5):1430–1434

    CAS  PubMed  Google Scholar 

  40. Maier SF et al (1998) The role of the vagus nerve in cytokine-to-brain communication. Ann N Y Acad Sci 840:289–300

    CAS  PubMed  Google Scholar 

  41. Li S et al (2018) Intestinal microbiota impact sepsis associated encephalopathy via the vagus nerve. Neurosci Lett 662:98–104

    CAS  PubMed  Google Scholar 

  42. van Westerloo DJ et al (2006) The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology 130(6):1822–1830

    PubMed  Google Scholar 

  43. Mioni C et al (2005) Activation of an efferent cholinergic pathway produces strong protection against myocardial ischemia/reperfusion injury in rats. Crit Care Med 33(11):2621–2628

    CAS  PubMed  Google Scholar 

  44. Jin H et al (2017) Anti-inflammatory effects and mechanisms of vagal nerve stimulation combined with electroacupuncture in a rodent model of TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol 313(3):G192–G202

    PubMed  Google Scholar 

  45. Koopman FA et al (2017) Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. J Intern Med 282(1):64–75

    CAS  PubMed  Google Scholar 

  46. Chapleau MW et al (2016) Chronic vagal nerve stimulation prevents high-salt diet-induced endothelial dysfunction and aortic stiffening in stroke-prone spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 311(1):H276–H285

    PubMed  PubMed Central  Google Scholar 

  47. Martelli D et al (2014) Reflex control of inflammation by sympathetic nerves, not the vagus. J Physiol 592(7):1677–1686

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Matteoli G et al (2014) A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut 63(6):938–948

    CAS  PubMed  Google Scholar 

  49. Martelli D, McKinley MJ, McAllen RM (2014) The cholinergic anti-inflammatory pathway: a critical review. Auton Neurosci 182:65–69

    CAS  PubMed  Google Scholar 

  50. Janig W, Green PG (2014) Acute inflammation in the joint: its control by the sympathetic nervous system and by neuroendocrine systems. Auton Neurosci 182:42–54

    PubMed  Google Scholar 

  51. Miao FJ, Levine JD (1999) Neural and endocrine mechanisms mediating noxious stimulus-induced inhibition of bradykinin plasma extravasation in the rat. J Pharmacol Exp Ther 291(3):1028–1037

    CAS  PubMed  Google Scholar 

  52. Bellinger DL, Lorton D (2018) Sympathetic nerve hyperactivity in the spleen: causal for nonpathogenic-driven chronic immune-mediated inflammatory diseases (IMIDs)? Int J Mol Sci 19(4):1188. https://doi.org/10.3390/ijms19041188

    Article  CAS  PubMed Central  Google Scholar 

  53. Tiegs G, Bang R, Neuhuber WL (1999) Requirement of peptidergic sensory innervation for disease activity in murine models of immune hepatitis and protection by beta-adrenergic stimulation. J Neuroimmunol 96(2):131–143

    CAS  PubMed  Google Scholar 

  54. Neuhuber WL, Tiegs G (2004) Innervation of immune cells: evidence for neuroimmunomodulation in the liver. Anat Rec A Discov Mol Cell Evol Biol 280(1):884–892

    PubMed  Google Scholar 

  55. Harle P et al (2005) An opposing time-dependent immune-modulating effect of the sympathetic nervous system conferred by altering the cytokine profile in the local lymph nodes and spleen of mice with type II collagen-induced arthritis. Arthritis Rheum 52(4):1305–1313

    PubMed  Google Scholar 

  56. Sosnowski M et al (2005) Heart rate variability fraction–a new reportable measure of 24-hour R-R interval variation. Ann Noninvasive Electrocardiol 10(1):7–15

    PubMed  PubMed Central  Google Scholar 

  57. Rajendra Acharya U et al (2006) Heart rate variability: a review. Med Biol Eng Comput 44(12):1031–1051

    CAS  PubMed  Google Scholar 

  58. Williams DP et al (2019) Heart rate variability and inflammation: a meta-analysis of human studies. Brain Behav Immun 80:219–226

    PubMed  Google Scholar 

  59. Doheny KK et al (2014) Diminished vagal tone is a predictive biomarker of necrotizing enterocolitis-risk in preterm infants. Neurogastroenterol Motil 26(6):832–840

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Robinson-Papp J et al (2018) Vagal dysfunction and small intestinal bacterial overgrowth: novel pathways to chronic inflammation in HIV. AIDS 32(9):1147–1156

    PubMed  Google Scholar 

  61. Jacob G, Costa F, Biaggioni I (2003) Spectrum of autonomic cardiovascular neuropathy in diabetes. Diabetes Care 26(7):2174–2180

    PubMed  Google Scholar 

  62. Stolk RF et al (2020) Norepinephrine dysregulates the immune response and compromises host defense during sepsis. Am J Respir Crit Care Med 202(6):830–842

    CAS  PubMed  Google Scholar 

  63. Kox M et al (2014) Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans. Proc Natl Acad Sci U S A 111(20):7379–7384

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Miller LE et al (2000) The loss of sympathetic nerve fibers in the synovial tissue of patients with rheumatoid arthritis is accompanied by increased norepinephrine release from synovial macrophages. FASEB J 14(13):2097–2107

    CAS  PubMed  Google Scholar 

  65. Levick SP et al (2010) Sympathetic nervous system modulation of inflammation and remodeling in the hypertensive heart. Hypertension 55(2):270–276

    CAS  PubMed  Google Scholar 

  66. Bonaz B, Sinniger V, Pellissier S (2016) Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. J Physiol 594(20):5781–5790

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pellissier S et al (2010) Psychological adjustment and autonomic disturbances in inflammatory bowel diseases and irritable bowel syndrome. Psychoneuroendocrinology 35(5):653–662

    PubMed  Google Scholar 

  68. Goel N et al (2014) Sex differences in the HPA axis. Compr Physiol 4(3):1121–1155

    PubMed  Google Scholar 

  69. Yuan H, Silberstein SD (2016) Vagus nerve and vagus nerve stimulation, a comprehensive review: Part I. Headache 56(1):71–78

    PubMed  Google Scholar 

  70. Tarn J et al (2019) The effects of noninvasive vagus nerve stimulation on fatigue and immune responses in patients with primary Sjögren’s syndrome. Neuromodulation 22(5):580–585

    PubMed  Google Scholar 

  71. Paulon E et al (2017) Proof of concept: short-term non-invasive cervical vagus nerve stimulation in patients with drug-refractory gastroparesis. Frontline Gastroenterol 8(4):325–330

    PubMed  PubMed Central  Google Scholar 

  72. Robinson-Papp J et al (2019) The effect of pyridostigmine on small intestinal bacterial overgrowth (SIBO) and plasma inflammatory biomarkers in HIV-associated autonomic neuropathies. J Neurovirol 25(4):551–559

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kidd BL et al (1992) Role of the sympathetic nervous system in chronic joint pain and inflammation. Ann Rheum Dis 51(11):1188–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Vahabi S, Rafieian Y, Abbas Zadeh A (2018) The effects of intraoperative esmolol infusion on the postoperative pain and hemodynamic stability after rhinoplasty. J Invest Surg 31(2):82–88

    PubMed  Google Scholar 

  75. Mendonca FT et al (2021) Intra-operative esmolol and pain following mastectomy: A randomised clinical trial. Eur J Anaesthesiol 38(7):735–743

    CAS  PubMed  Google Scholar 

  76. Furlan R et al (2006) Sympathetic overactivity in active ulcerative colitis: effects of clonidine. Am J Physiol Regul Integr Comp Physiol 290(1):R224–R232

    CAS  PubMed  Google Scholar 

  77. Halker RB et al (2016) ACE and ARB Agents in the prophylactic therapy of migraine-how effective are they? Curr Treat Options Neurol 18(4):15

    PubMed  Google Scholar 

  78. Koenig J, Thayer JF (2016) Sex differences in healthy human heart rate variability: a meta-analysis. Neurosci Biobehav Rev 64:288–310

    PubMed  Google Scholar 

  79. Mercuro G et al (2000) Evidence of a role of endogenous estrogen in the modulation of autonomic nervous system. Am J Cardiol 85(6):787–9, A9

    CAS  PubMed  Google Scholar 

  80. Vinkers CH et al (2021) An integrated approach to understand biological stress system dysregulation across depressive and anxiety disorders. J Affect Disord 283:139–146

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Celestine He for her contribution to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bridget Mueller.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors provide their consent to publish.

Conflict of Interest/Competing interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mueller, B., Figueroa, A. & Robinson-Papp, J. Structural and functional connections between the autonomic nervous system, hypothalamic–pituitary–adrenal axis, and the immune system: a context and time dependent stress response network. Neurol Sci 43, 951–960 (2022). https://doi.org/10.1007/s10072-021-05810-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05810-1

Keywords

Navigation