Skip to main content

Advertisement

Log in

Inhibition of RhoA Activity Does Not Rescue Synaptic Development Abnormalities and Long-Term Cognitive Impairment After Sevoflurane Exposure

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

General anesthetics interfere with dendritic development and synaptogenesis, resulting in cognitive impairment in the developing animals. RhoA signal pathway plays important roles in dendritic development by regulating cytoskeleton protein such as tubulin and actin. However, it’s not clear whether RhoA pathway is involved in inhaled general anesthetics sevoflurane-induced synaptic development abnormalities and long-term cognitive dysfunction. Rats at postnatal day 7 (PND7) were injected intraperitoneally with RhoA pathway inhibitor Y27632 or saline 20 min before exposed to 2.8% sevoflurane for 4 h. The apoptosis-related proteins and RhoA/CRMP2 pathway proteins in the hippocampus were measured 6 h after sevoflurane exposure. Cognitive functions were evaluated by the open field test on PND25 rats and contextual fear conditioning test on PND32-33 rats. The dendritic morphology and density of dendritic spines in the pyramidal neurons of hippocampus were determined by Golgi staining and the synaptic plasticity-related proteins were also measured on PND33 rats. Long term potentiation (LTP) from hippocampal slices was recorded on PND34-37 rats. Sevoflurane induced caspase-3 activation, decreased the ratio of Bcl-2/Bax and increased TUNEL-positive neurons in hippocampus of PND7 rats, which were attenuated by inhibition of RhoA. However, sevoflurane had no significant effects on activity of RhoA/CRMP2 pathway. Sevoflurane disturbed dendritic morphogenesis, reduced the number of dendritic spines, decreased proteins expression of PSD-95, drebrin and synaptophysin, inhibited LTP in hippocampal slices and impaired memory ability in the adolescent rats, while inhibition of RhoA activity did not rescue the changes above induced by sevoflurane. RhoA signal pathway did not participate in sevoflurane-induced dendritic and synaptic development abnormalities and cognitive dysfunction in developing rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CRMP2:

Collapsin response mediator protein 2

PND7:

Postnatal day 7

LTP:

Long term potentiation

References

  1. Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF et al (2003) Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 23(3):876–882

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kong F, Xu L, He D, Zhang X, Lu H (2011) Effects of gestational isoflurane exposure on postnatal memory and learning in rats. Eur J Pharmacol 670(1):168–174

    CAS  PubMed  Google Scholar 

  3. Satomoto M, Satoh Y, Terui K, Miyao H, Takishima K, Ito M et al (2009) Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology 110(3):628–637

    CAS  PubMed  Google Scholar 

  4. Brambrink AM, Evers AS, Avidan MS, Farber NB, Smith DJ, Zhang X et al (2010) Isoflurane-induced neuroapoptosis in the neonatal rhesus macaque brain. Anesthesiology 112(4):834–841

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Briner A, De Roo M, Dayer A, Muller D, Habre W, Vutskits L (2010) Volatile anesthetics rapidly increase dendritic spine density in the rat medial prefrontal cortex during synaptogenesis. Anesthesiology 112(3):546–556

    PubMed  Google Scholar 

  6. De Roo M, Klauser P, Briner A, Nikonenko I, Mendez P, Dayer A et al (2009) Anesthetics rapidly promote synaptogenesis during a critical period of brain development. PLoS ONE 4(9):e7043

    PubMed  PubMed Central  Google Scholar 

  7. Xiao H, Liu B, Chen Y, Zhang J (2016) Learning, memory and synaptic plasticity in hippocampus in rats exposed to sevoflurane. Int J Dev Neurosci 48:38–49

    CAS  PubMed  Google Scholar 

  8. Briner A, Nikonenko I, De Roo M, Dayer A, Muller D, Vutskits L (2011) Developmental stage-dependent persistent impact of propofol anesthesia on dendritic spines in the rat medial prefrontal cortex. Anesthesiology 115(2):282–293

    CAS  PubMed  Google Scholar 

  9. Head BP, Patel HH, Niesman IR, Drummond JC, Roth DM, Patel PM (2009) Inhibition of p75 neurotrophin receptor attenuates isoflurane-mediated neuronal apoptosis in the neonatal central nervous system. Anesthesiology 110(4):813–825

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lunardi N, Ori C, Erisir A, Jevtovic-Todorovic V (2010) General anesthesia causes long-lasting disturbances in the ultrastructural properties of developing synapses in young rats. Neurotox Res 17(2):179–188

    CAS  PubMed  Google Scholar 

  11. Fifkova E, Delay RJ (1982) Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity. J Cell Biol 95(1):345–350

    CAS  PubMed  Google Scholar 

  12. Matus A, Ackermann M, Pehling G, Byers HR, Fujiwara K (1982) High actin concentrations in brain dendritic spines and postsynaptic densities. Proc Natl Acad Sci USA 79(23):7590–7594

    CAS  PubMed  Google Scholar 

  13. Matus A (2000) Actin-based plasticity in dendritic spines. Science 290(5492):754–758

    CAS  PubMed  Google Scholar 

  14. Elia LP, Yamamoto M, Zang K, Reichardt LF (2006) p120 catenin regulates dendritic spine and synapse development through Rho-family GTPases and cadherins. Neuron 51(1):43–56

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Govek EE, Newey SE, Akerman CJ, Cross JR, Van der Veken L, Van Aelst L (2004) The X-linked mental retardation protein oligophrenin-1 is required for dendritic spine morphogenesis. Nat Neurosci 7(4):364–372

    CAS  PubMed  Google Scholar 

  16. Amano M, Nakayama M, Kaibuchi K (2010) Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken) 67(9):545–554

    CAS  Google Scholar 

  17. Hall A, Lalli G (2010) Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harb Perspect Biol 2(2):a1818

    Google Scholar 

  18. Lemkuil BP, Head BP, Pearn ML, Patel HH, Drummond JC, Patel PM (2011) Isoflurane neurotoxicity is mediated by p75NTR-RhoA activation and actin depolymerization. Anesthesiology 114(1):49–57

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fukata Y, Itoh TJ, Kimura T, Menager C, Nishimura T, Shiromizu T et al (2002) CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol 4(8):583–591

    CAS  PubMed  Google Scholar 

  20. Inagaki N, Chihara K, Arimura N, Menager C, Kawano Y, Matsuo N et al (2001) CRMP-2 induces axons in cultured hippocampal neurons. Nat Neurosci 4(8):781–782

    CAS  PubMed  Google Scholar 

  21. Charrier E, Reibel S, Rogemond V, Aguera M, Thomasset N, Honnorat J (2003) Collapsin response mediator proteins (CRMPs): involvement in nervous system development and adult neurodegenerative disorders. Mol Neurobiol 28(1):51–64

    CAS  PubMed  Google Scholar 

  22. Jin X, Sasamoto K, Nagai J, Yamazaki Y, Saito K, Goshima Y et al (2016) Phosphorylation of CRMP2 by Cdk5 regulates dendritic spine development of cortical neuron in the mouse hippocampus. Neural Plast 2016:6790743

    PubMed  Google Scholar 

  23. Makihara H, Nakai S, Ohkubo W, Yamashita N, Nakamura F, Kiyonari H et al (2016) CRMP1 and CRMP2 have synergistic but distinct roles in dendritic development. Genes Cells 21(9):994–1005

    CAS  PubMed  Google Scholar 

  24. Yamashita N, Ohshima T, Nakamura F, Kolattukudy P, Honnorat J, Mikoshiba K et al (2012) Phosphorylation of CRMP2 (collapsin response mediator protein 2) is involved in proper dendritic field organization. J Neurosci 32(4):1360–1365

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu Y, Lin D, Liu C, Zhao Y, Shen Z, Zhang K et al (2017) Cyclin-dependent kinase 5/Collapsin response mediator protein 2 pathway may mediate sevoflurane-induced dendritic development abnormalities in rat cortical neurons. Neurosci Lett 651:21–29

    CAS  PubMed  Google Scholar 

  26. Arimura N, Menager C, Kawano Y, Yoshimura T, Kawabata S, Hattori A et al (2005) Phosphorylation by Rho kinase regulates CRMP-2 activity in growth cones. Mol Cell Biol 25(22):9973–9984

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tao G, Zhang J, Zhang L, Dong Y, Yu B, Crosby G et al (2014) Sevoflurane induces tau phosphorylation and glycogen synthase kinase 3beta activation in young mice. Anesthesiology 121(3):510–527

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng H, Dong Y, Xu Z, Crosby G, Culley DJ, Zhang Y et al (2013) Sevoflurane anesthesia in pregnant mice induces neurotoxicity in fetal and offspring mice. Anesthesiology 118(3):516–526

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lu Y, Huang Y, Jiang J, Hu R, Yang Y, Jiang H et al (2016) Neuronal apoptosis may not contribute to the long-term cognitive dysfunction induced by a brief exposure to 2% sevoflurane in developing rats. Biomed Pharmacother 78:322–328

    CAS  PubMed  Google Scholar 

  30. Schilling JM, Kassan A, Mandyam C, Pearn ML, Voong A, Grogman GG et al (2017) Inhibition of p75 neurotrophin receptor does not rescue cognitive impairment in adulthood after isoflurane exposure in neonatal mice. Br J Anaesth 119(3):465–471

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fredriksson A, Ponten E, Gordh T, Eriksson P (2007) Neonatal exposure to a combination of N-methyl-D-aspartate and gamma-aminobutyric acid type A receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits. Anesthesiology 107(3):427–436

    CAS  PubMed  Google Scholar 

  32. Stratmann G, May LD, Sall JW, Alvi RS, Bell JS, Ormerod BK et al (2009) Effect of hypercarbia and isoflurane on brain cell death and neurocognitive dysfunction in 7-day-old rats. Anesthesiology 110(4):849–861

    CAS  PubMed  Google Scholar 

  33. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30(4):572–580

    CAS  PubMed  Google Scholar 

  34. Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27(10):1372–1384

    CAS  PubMed  Google Scholar 

  35. Wang WY, Luo Y, Jia LJ, Hu SF, Lou XK, Shen SL et al (2014) Inhibition of aberrant cyclin-dependent kinase 5 activity attenuates isoflurane neurotoxicity in the developing brain. Neuropharmacology 77:90–99

    CAS  PubMed  Google Scholar 

  36. Tanabe K, Yamazaki H, Inaguma Y, Asada A, Kimura T, Takahashi J et al (2014) Phosphorylation of drebrin by cyclin-dependent kinase 5 and its role in neuronal migration. PLoS ONE 9(3):e92291

    PubMed  PubMed Central  Google Scholar 

  37. Worth DC, Daly CN, Geraldo S, Oozeer F, Gordon-Weeks PR (2013) Drebrin contains a cryptic F-actin-bundling activity regulated by Cdk5 phosphorylation. J Cell Biol 202(5):793–806

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bellani S, Sousa VL, Ronzitti G, Valtorta F, Meldolesi J, Chieregatti E (2010) The regulation of synaptic function by alpha-synuclein. Commun Integr Biol 3(2):106–109

    PubMed  PubMed Central  Google Scholar 

  39. Beique JC, Andrade R (2003) PSD-95 regulates synaptic transmission and plasticity in rat cerebral cortex. J Physiol 546(Pt 3):859–867

    CAS  PubMed  Google Scholar 

  40. Wang SQ, Fang F, Xue ZG, Cang J, Zhang XG (2013) Neonatal sevoflurane anesthesia induces long-term memory impairment and decreases hippocampal PSD-95 expression without neuronal loss. Eur Rev Med Pharmacol Sci 17(7):941–950

    PubMed  Google Scholar 

  41. Dent EW, Gupton SL, Gertler FB (2011) The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol 3:3

    Google Scholar 

  42. Carcak N, Yavuz M, Eryigit KT, Kurt AH, Urhan KM, Onat FY et al (2018) Suppressive effect of Rho-kinase inhibitors Y-27632 and fasudil on spike-and-wave discharges in genetic absence epilepsy rats from Strasbourg (GAERS). Naunyn Schmiedebergs Arch Pharmacol 391(11):1275–1283

    CAS  PubMed  Google Scholar 

  43. Tan M, Cha C, Ye Y, Zhang J, Li S, Wu F et al (2015) CRMP4 and CRMP2 interact to coordinate cytoskeleton dynamics, regulating growth cone development and axon elongation. Neural Plast 2015:947423

    PubMed  PubMed Central  Google Scholar 

  44. Arimura N, Inagaki N, Chihara K, Menager C, Nakamura N, Amano M et al (2000) Phosphorylation of collapsin response mediator protein-2 by Rho-kinase. Evidence for two separate signaling pathways for growth cone collapse. J Biol Chem 275(31):23973–23980

    CAS  PubMed  Google Scholar 

  45. Han T, Hu Z, Tang Y, Shrestha A, Ouyang W, Liao Q (2015) Inhibiting Rho kinase 2 reduces memory dysfunction in adult rats exposed to sevoflurane at postnatal days 7–9. Biomed Rep 3(3):361–364

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Uchida Y, Ohshima T, Sasaki Y, Suzuki H, Yanai S, Yamashita N et al (2005) Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer’s disease. Genes Cells 10(2):165–179

    CAS  PubMed  Google Scholar 

  47. Liu Y, Liu C, Zeng M, Han X, Zhang K, Fu Y et al (2018) Influence of sevoflurane exposure on mitogen-activated protein kinases and Akt/GSK-3beta/CRMP-2 signaling pathways in the developing rat brain. Exp Ther Med 15(2):2066–2073

    CAS  PubMed  Google Scholar 

  48. Zhang X, Shen F, Xu D, Zhao X (2016) A lasting effect of postnatal sevoflurane anesthesia on the composition of NMDA receptor subunits in rat prefrontal cortex. Int J Dev Neurosci 54:62–69

    CAS  PubMed  Google Scholar 

  49. Zhou X, Lu D, Li WD, Chen XH, Yang XY, Chen X et al (2018) Sevoflurane affects oxidative stress and alters apoptosis status in children and cultured neural stem cells. Neurotox Res 33(4):790–800

    CAS  PubMed  Google Scholar 

  50. Ju LS, Jia M, Sun J, Sun XR, Zhang H, Ji MH et al (2016) Hypermethylation of hippocampal synaptic plasticity-related genes is involved in neonatal sevoflurane exposure-induced cognitive impairments in rats. Neurotox Res 29(2):243–255

    CAS  PubMed  Google Scholar 

  51. Xu C, Tan S, Zhang J, Seubert CN, Gravenstein N, Sumners C et al (2015) Anesthesia with sevoflurane in neonatal rats: developmental neuroendocrine abnormalities and alleviating effects of the corticosteroid and Cl(-) importer antagonists. Psychoneuroendocrinology 60:173–181

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Orliaguet G, Vivien B, Langeron O, Bouhemad B, Coriat P, Riou B (2001) Minimum alveolar concentration of volatile anesthetics in rats during postnatal maturation. Anesthesiology 95(3):734–739

    CAS  PubMed  Google Scholar 

  53. Li Y, Liu C, Zhao Y, Hu K, Zhang J, Zeng M et al (2013) Sevoflurane induces short-term changes in proteins in the cerebral cortices of developing rats. Acta Anaesthesiol Scand 57(3):380–390

    CAS  PubMed  Google Scholar 

  54. Zhao T, Li Y, Wei W, Savage S, Zhou L, Ma D (2014) Ketamine administered to pregnant rats in the second trimester causes long-lasting behavioral disorders in offspring. Neurobiol Dis 68:145–155

    CAS  PubMed  Google Scholar 

  55. Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87(4):387–406

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Han D, Xu L, Xiao H, Prado SG, Shi S (2013) Dizocilpine reduces head diameter of dendritic spines in the hippocampus of adolescent rats. Psychiatry Res 210(1):351–356

    CAS  PubMed  Google Scholar 

  57. Zhao YD, Ou S, Cheng SY, Xiao Z, He WJ, Zhang JH et al (2013) Dendritic development of hippocampal CA1 pyramidal cells in a neonatal hypoxia-ischemia injury model. J Neurosci Res 91(9):1165–1173

    CAS  PubMed  Google Scholar 

  58. Lau AA, Crawley AC, Hopwood JJ, Hemsley KM (2008) Open field locomotor activity and anxiety-related behaviors in mucopolysaccharidosis type IIIA mice. Behav Brain Res 191(1):130–136

    CAS  PubMed  Google Scholar 

  59. Sanders RD, Xu J, Shu Y, Januszewski A, Halder S, Fidalgo A et al (2009) Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats. Anesthesiology 110(5):1077–1085

    CAS  PubMed  Google Scholar 

  60. Liu MG, Kang SJ, Shi TY, Koga K, Zhang MM, Collingridge GL et al (2013) Long-term potentiation of synaptic transmission in the adult mouse insular cortex: multielectrode array recordings. J Neurophysiol 110(2):505–521

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81371259); the Natural Science Foundation of Guangdong Province, China (Nos. 2016A030313251; 2018A0303130272); the Science and Technology Planning Project of Guangzhou, China (No. 201707010207) and the fundamental research funds for the central universities (No. 17ykjc26).

Author information

Authors and Affiliations

Authors

Contributions

ZL and JL: Investigation, Methodology, Writing, Original draft preparation. HL and LM: Conceptualization, Data curation. ZH, WH and YL: Visualization, Software, Supervision. YL: Designing, Writing-Reviewing and Editing.

Corresponding author

Correspondence to Yujuan Li.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 3329 KB)

Supplementary file2 (TIF 385 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Z., Li, J., Miao, L. et al. Inhibition of RhoA Activity Does Not Rescue Synaptic Development Abnormalities and Long-Term Cognitive Impairment After Sevoflurane Exposure. Neurochem Res 46, 468–481 (2021). https://doi.org/10.1007/s11064-020-03180-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03180-2

Keywords

Navigation