Skip to main content

Advertisement

Log in

Graphene Oxide Ameliorates the Cognitive Impairment Through Inhibiting PI3K/Akt/mTOR Pathway to Induce Autophagy in AD Mouse Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease of the central nervous system characterised by cognitive impairment. Its major pathological feature is the deposition of β-amyloid (Aβ) peptide, which triggers a series of pathological cascades. Autophagy is a main pathway to eliminate abnormal aggregated proteins, and increasing autophagy represents a plausible treatment strategy against relative overproduction of neurotoxic Aβ. Graphene oxide (GO) is an emerging carbon-based nanomaterial. As a derivative of graphene with neuroprotective effects, it can effectively increase the clearance of abnormally aggregated protein. In this article, we investigated the protective function of GO in an AD mouse model. GO (30 mg/kg, intraperitoneal) was administered for 2 weeks. The results of the Morris water maze test and the novel object recognition test suggested that GO ameliorated learning and memory impairments in 5xFAD mice. The long-term potentiation and depotentiation from the perforant path to the dentate gyrus in the hippocampus were increased with GO treatment in 5xFAD mice. Furthermore, GO upregulated the expression of synapse-related proteins and increased the cell density in the hippocampus. Our results showed that GO up-regulated LC3II/LC3I and Beclin-1 and decreased p62 protein levels in 5xFAD mice. In addition, GO downregulated the PI3K/Akt/mTOR signalling pathway to induce autophagy. These results have revealed the protective potential of GO in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

Aβ:

β-Amyloid plaque

DEP:

Depotentiation

fEPSPs:

Field excitatory post-synaptic potentials

GO:

Graphene oxide

GQDs:

Graphene quantum dots

IT:

Initial training

LC3:

Microtubule-associated light chain 3

LFS:

Low-frequency stimulation

LTP:

Long-term potentiation

mTOR:

Mammalian target of rapamycin

MWM:

Morris water maze

NOR:

Novel object recognition

NR2B:

N-methyl-d-aspartate receptor 2B

PD:

Parkinson’s disease

PI3K:

Phosphatidylinositol-3 kinases

PSD-95:

Postsynaptic density protein 95

RET:

Reversal exploring test

RT:

Reversal training

SET:

Space exploring test

SYP:

Synaptophysin

SOD:

Superoxide dismutase

SIRTs:

Sirtuins

TEM:

Transmission electron microscopy

TBS:

Theta burst stimulation

References

  1. Leinenga G, Götz J (2015) Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model. Sci Transl Med 7(278):278ra33

    Article  PubMed  CAS  Google Scholar 

  2. Ittner LM, Götz J (2011) Amyloid-β and tau–a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12(2):65–72

    Article  CAS  PubMed  Google Scholar 

  3. Reiss AB et al (2018) Amyloid toxicity in Alzheimer’s disease. Rev Neurosci 29(6):613–627

    Article  CAS  PubMed  Google Scholar 

  4. Rajasekhar K, Chakrabarti M, Govindaraju T (2015) Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer’s disease. Chem Commun (Camb) 51(70):13434–13450

    Article  CAS  Google Scholar 

  5. Paquet C et al (2018) Downregulated apoptosis and autophagy after anti-Aβ immunotherapy in Alzheimer’s disease. Brain Pathol 28(5):603–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Caccamo A et al (2010) Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem 285(17):13107–13120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Menzies FM et al (2017) Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93(5):1015–1034

    Article  CAS  PubMed  Google Scholar 

  8. Tan CC et al (2014) Autophagy in aging and neurodegenerative diseases: implications for pathogenesis and therapy. Neurobiol Aging 35(5):941–957

    Article  PubMed  Google Scholar 

  9. Cai Z et al (2012) Mammalian target of rapamycin: a valid therapeutic target through the autophagy pathway for Alzheimer’s disease? J Neurosci Res 90(6):1105–1118

    Article  CAS  PubMed  Google Scholar 

  10. Li Q, Liu Y, Sun M (2017) Autophagy and Alzheimer’s Disease. Cell Mol Neurobiol 37(3):377–388

    Article  CAS  PubMed  Google Scholar 

  11. Chen GY et al (2014) Graphene oxide triggers toll-like receptors/autophagy responses in vitro and inhibits tumor growth in vivo. Adv Healthc Mater 3(9):1486–1495

    Article  CAS  PubMed  Google Scholar 

  12. Chen GY et al (2015) Graphene oxide as a chemosensitizer: diverted autophagic flux, enhanced nuclear import, elevated necrosis and improved antitumor effects. Biomaterials 40:12–22

    Article  PubMed  CAS  Google Scholar 

  13. Feng X et al (2018a) Graphene oxide induces p62/SQSTM-dependent apoptosis through the impairment of autophagic flux and lysosomal dysfunction in PC12 cells. Acta Biomater 81:278–292

    Article  CAS  PubMed  Google Scholar 

  14. Munson MJ, Ganley IG (2015) MTOR, PIK3C3, and autophagy: signaling the beginning from the end. Autophagy 11(12):2375–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heras-Sandoval D et al (2014) The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 26(12):2694–2701

    Article  CAS  PubMed  Google Scholar 

  16. Wang C et al (2014a) Targeting the mTOR signaling network for Alzheimer’s disease therapy. Mol Neurobiol 49(1):120–135

    Article  CAS  PubMed  Google Scholar 

  17. Singh AK et al (2017) Neuroprotection through rapamycin-induced activation of autophagy and PI3K/Akt1/mTOR/CREB signaling against amyloid-β-induced oxidative stress, synaptic/neurotransmission dysfunction, and neurodegeneration in adult rats. Mol Neurobiol 54(8):5815–5828

    Article  CAS  PubMed  Google Scholar 

  18. Caccamo A et al (2013) mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell 12(3):370–380

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Z et al (2019) Geniposide-mediated protection against amyloid deposition and behavioral impairment correlates with downregulation of mTOR signaling and enhanced autophagy in a mouse model of Alzheimer’s disease. Aging (Albany NY) 11(2):536–548

    Article  Google Scholar 

  20. Fan S et al (2015) PI3K/AKT/mTOR/p70S6K pathway is involved in Aβ25-35-induced autophagy. Biomed Res Int 2015:161020

    PubMed  PubMed Central  Google Scholar 

  21. O’Neill C (2013) PI3-kinase/Akt/mTOR signaling: impaired on/off switches in aging, cognitive decline and Alzheimer’s disease. Exp Gerontol 48(7):647–653

    Article  CAS  Google Scholar 

  22. Perluigi M et al (2014) Neuropathological role of PI3K/Akt/mTOR axis in Down syndrome brain. Biochim Biophys Acta 1842(7):1144–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun Q et al (2018) Doxorubicin and anti-VEGF siRNA co-delivery via nano-graphene oxide for enhanced cancer therapy in vitro and in vivo. Int J Nanomed 13:3713–3728

    Article  CAS  Google Scholar 

  24. Singh DP et al (2018) Graphene oxide: an efficient material and recent approach for biotechnological and biomedical applications. Mater Sci Eng C Mater Biol Appl 86:173–197

    Article  CAS  PubMed  Google Scholar 

  25. Sahni D et al (2013) Biocompatibility of pristine graphene for neuronal interface. J Neurosurg Pediatr 11(5):575–583

    Article  PubMed  Google Scholar 

  26. Jin P et al (2016) Autophagy-mediated clearance of ubiquitinated mutant huntingtin by graphene oxide. Nanoscale 8(44):18740–18750

    Article  CAS  PubMed  Google Scholar 

  27. Wei PF et al (2014) Accelerating the clearance of mutant huntingtin protein aggregates through autophagy induction by europium hydroxide nanorods. Biomaterials 35(3):899–907

    Article  CAS  PubMed  Google Scholar 

  28. Song W et al (2014) Ceria nanoparticles stabilized by organic surface coatings activate the lysosome-autophagy system and enhance autophagic clearance. ACS Nano 8(10):10328–10342

    Article  CAS  PubMed  Google Scholar 

  29. Ahmad I et al (2017) Graphene oxide-iron oxide nanocomposite as an inhibitor of Aβ 42 amyloid peptide aggregation. Colloids Surf B Biointerfaces 159:540–545

    Article  CAS  PubMed  Google Scholar 

  30. Mahmoudi M et al (2012) Graphene oxide strongly inhibits amyloid beta fibrillation. Nanoscale 4(23):7322–7325

    Article  CAS  PubMed  Google Scholar 

  31. Yang Z et al (2015) Destruction of amyloid fibrils by graphene through penetration and extraction of peptides. Nanoscale 7(44):18725–18737

    Article  CAS  PubMed  Google Scholar 

  32. Jeong JK et al (2017) Autophagic flux induced by graphene oxide has a neuroprotective effect against human prion protein fragments. Int J Nanomed 12:8143–8158

    Article  CAS  Google Scholar 

  33. Chen GY et al (2012) A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33(2):418–427

    Article  PubMed  CAS  Google Scholar 

  34. Lin KC et al (2018) Graphene oxide sensitizes cancer cells to chemotherapeutics by inducing early autophagy events, promoting nuclear trafficking and necrosis. Theranostics 8(9):2477–2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yuan YG, Gurunathan S (2017) Combination of graphene oxide-silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells. Int J Nanomed 12:6537–6558

    Article  CAS  Google Scholar 

  36. Wei M et al (2019) Graphene oxide nanocolloids induce autophagy-lysosome dysfunction in mouse embryonic stem cells. J Biomed Nanotechnol 15(2):340–351

    Article  CAS  PubMed  Google Scholar 

  37. Yang K et al (2013) In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials 34(11):2787–2795

    Article  CAS  PubMed  Google Scholar 

  38. Lueptow LM (2017) Novel object recognition test for the investigation of learning and memory in mice. J Vis Exp. https://doi.org/10.3791/55718

    Article  PubMed  PubMed Central  Google Scholar 

  39. Feng L et al (2018b) Etidronate-zinc complex ameliorated cognitive and synaptic plasticity impairments in 2-vessel occlusion model rats by reducing neuroinflammation. Neuroscience 390:206–217

    Article  CAS  PubMed  Google Scholar 

  40. Bromley-Brits K, Deng Y, Song W (2011) Morris water maze test for learning and memory deficits in Alzheimer’s disease model mice. J Vis Exp. https://doi.org/10.3791/2920

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li Z et al (2016) Autophagy ameliorates cognitive impairment through activation of PVT1 and apoptosis in diabetes mice. Behav Brain Res 305:265–277

    Article  PubMed  Google Scholar 

  42. Yu M et al (2016) Antidepressant-like effects and possible mechanisms of amantadine on cognitive and synaptic deficits in a rat model of chronic stress. Stress 19(1):104–113

    Article  CAS  PubMed  Google Scholar 

  43. Hu NW et al (2014) mGlu5 receptors and cellular prion protein mediate amyloid-β-facilitated synaptic long-term depression in vivo. Nat Commun 5:3374

    Article  PubMed  CAS  Google Scholar 

  44. Brandon EP et al (1995) Hippocampal long-term depression and depotentiation are defective in mice carrying a targeted disruption of the gene encoding the RI beta subunit of cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 92(19):8851–8855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gibb R, Kolb B (1998) A method for vibratome sectioning of Golgi-Cox stained whole rat brain. J Neurosci Methods 79(1):1–4

    Article  CAS  PubMed  Google Scholar 

  46. Xiao X et al (2019) Anti-inflammatory treatment with β-asarone improves impairments in social interaction and cognition in MK-801 treated mice. Brain Res Bull 150:150–159

    Article  CAS  PubMed  Google Scholar 

  47. Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711

    Article  CAS  PubMed  Google Scholar 

  48. Li X et al (2020) Graphene oxide enhances β-amyloid clearance by inducing autophagy of microglia and neurons. Chem Biol Interact 325:109126

    Article  CAS  PubMed  Google Scholar 

  49. Xiao S et al (2016) Graphene quantum dots conjugated neuroprotective peptide improve learning and memory capability. Biomaterials 106:98–110

    Article  CAS  PubMed  Google Scholar 

  50. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

    Article  CAS  PubMed  Google Scholar 

  51. D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36(1):60–90

    Article  PubMed  Google Scholar 

  52. Morris RG (1989) Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. J Neurosci 9(9):3040–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kirkwood A, Lee HK, Bear MF (1995) Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience. Nature 375(6529):328–331

    Article  CAS  PubMed  Google Scholar 

  54. Qi Y, Hu NW, Rowan MJ (2013) Switching off LTP: mGlu and NMDA receptor-dependent novelty exploration-induced depotentiation in the rat hippocampus. Cereb Cortex 23(4):932–939

    Article  PubMed  Google Scholar 

  55. Tong G, Malenka RC, Nicoll RA (1996) Long-term potentiation in cultures of single hippocampal granule cells: a presynaptic form of plasticity. Neuron 16(6):1147–1157

    Article  CAS  PubMed  Google Scholar 

  56. Cho KO, Hunt CA, Kennedy MB (1992) The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9(5):929–942

    Article  CAS  PubMed  Google Scholar 

  57. Toro C, Deakin JF (2005) NMDA receptor subunit NRI and postsynaptic protein PSD-95 in hippocampus and orbitofrontal cortex in schizophrenia and mood disorder. Schizophr Res 80(2–3):323–330

    Article  PubMed  Google Scholar 

  58. Calhoun ME et al (1998) Hippocampal neuron and synaptophysin-positive bouton number in aging C57BL/6 mice. Neurobiol Aging 19(6):599–606

    Article  CAS  PubMed  Google Scholar 

  59. Valtorta F et al (2004) Synaptophysin: leading actor or walk-on role in synaptic vesicle exocytosis? BioEssays 26(4):445–453

    Article  CAS  PubMed  Google Scholar 

  60. Jawhar S et al (2012) Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Aβ aggregation in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol Aging 33(1):196.e29–40

    Article  CAS  Google Scholar 

  61. Lee JS et al (2015) Graphene substrate for inducing neurite outgrowth. Biochem Biophys Res Commun 460(2):267–273

    Article  CAS  PubMed  Google Scholar 

  62. Fu C et al (2019) Effect of electrical stimulation combined with graphene-oxide-based membranes on neural stem cell proliferation and differentiation. Artif Cells Nanomed Biotechnol 47(1):1867–1876

    Article  CAS  PubMed  Google Scholar 

  63. Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci 17:341–371

    Article  CAS  PubMed  Google Scholar 

  64. Manczak M et al (2018) Hippocampal mutant APP and amyloid beta-induced cognitive decline, dendritic spine loss, defective autophagy, mitophagy and mitochondrial abnormalities in a mouse model of Alzheimer’s disease. Hum Mol Genet 27(8):1332–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ishizuka Y, Hanamura K (2017) Drebrin in Alzheimer’s disease. Adv Exp Med Biol 1006:203–223

    Article  CAS  PubMed  Google Scholar 

  66. Kirouac L et al (2017) Activation of Ras-ERK signaling and GSK-3 by amyloid precursor protein and amyloid beta facilitates neurodegeneration in Alzheimer’s disease. Eneuro. https://doi.org/10.1523/ENEURO.0149-16.2017

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang HC et al (2015) Autophagy is involved in oral rAAV/Aβ vaccine-induced Aβ clearance in APP/PS1 transgenic mice. Neurosci Bull 31(4):491–504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Fan L et al (2019) Nitazoxanide, an anti-parasitic drug, efficiently ameliorates learning and memory impairments in AD model mice. Acta Pharmacol Sin 40(10):1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li F et al (2015) Autophagy induction by silibinin positively contributes to its anti-metastatic capacity via AMPK/mTOR pathway in renal cell carcinoma. Int J Mol Sci 16(4):8415–8429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tramutola A et al (2015) Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD. J Neurochem 133(5):739–749

    Article  CAS  PubMed  Google Scholar 

  71. Wang C et al (2014b) Downregulation of PI3K/Akt/mTOR signaling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice. Eur J Pharmacol 740:312–320

    Article  CAS  PubMed  Google Scholar 

  72. Olteanu D et al (2015) Cytotoxicity assessment of graphene-based nanomaterials on human dental follicle stem cells. Colloids Surf B Biointerfaces 136:791–798

    Article  CAS  PubMed  Google Scholar 

  73. Ren C, Hu X, Zhou Q (2018) Graphene oxide quantum dots reduce oxidative stress and inhibit neurotoxicity in vitro and in vivo through catalase-like activity and metabolic regulation. Adv Sci 5(5):1700595

    Article  CAS  Google Scholar 

  74. Calabrese EJ et al (2020) Hormesis and Ginkgo biloba (GB): numerous biological effects of GB are mediated via hormesis. Ageing Res Rev. https://doi.org/10.1016/j.arr.2020.101019

    Article  PubMed  Google Scholar 

  75. Moore MN (2020) Lysosomes, autophagy, and hormesis in cell physiology, pathology, and age-related disease. Dose Response 18(3):1559325820934227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Calabrese V et al (2018) Aging and Parkinson’s disease: inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radic Biol Med 115:80–91

    Article  CAS  PubMed  Google Scholar 

  77. Calabrese V et al (2016a) Hormesis, cellular stress response, and redox homeostasis in autism spectrum disorders. J Neurosci Res 94(12):1488–1498

    Article  CAS  PubMed  Google Scholar 

  78. Calabrese V et al (2016b) Major pathogenic mechanisms in vascular dementia: roles of cellular stress response and hormesis in neuroprotection. J Neurosci Res 94(12):1588–1603

    Article  CAS  PubMed  Google Scholar 

  79. Brunetti G, Di Rosa G, Scuto M (2020) Healthspan maintenance and prevention of Parkinson’s-like phenotypes with hydroxytyrosol and oleuropein aglycone in C. elegans. Int J Mol Sci 21(7):2588

    Article  CAS  PubMed Central  Google Scholar 

  80. Di Rosa G et al (2020) Healthspan enhancement by olive polyphenols in C. elegans wild type and Parkinson’s models. Int J Mol Sci 21(11):3893

    Article  PubMed Central  CAS  Google Scholar 

  81. Hensley K, Harris-White ME (2015) Redox regulation of autophagy in healthy brain and neurodegeneration. Neurobiol Dis 84:50–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Calabrese V et al (2007) Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes. Neurochem Res 32(4–5):757–773

    Article  CAS  PubMed  Google Scholar 

  83. Cioffi F, Adam RHI, Broersen K (2019) Molecular mechanisms and genetics of oxidative stress in Alzheimer’s disease. J Alzheimers Dis 72(4):981–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Calabrese V et al (2009) Vitagenes, cellular stress response, and acetylcarnitine: relevance to hormesis. BioFactors 35(2):146–160

    Article  CAS  PubMed  Google Scholar 

  85. Bonfili L et al (2018) SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Mol Neurobiol 55(10):7987–8000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Calabrese V et al (2012) Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes. Biochim Biophys Acta 1822(5):729–736

    Article  CAS  PubMed  Google Scholar 

  87. Giordano S, Darley-Usmar V, Zhang J (2014) Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease. Redox Biol 2:82–90

    Article  CAS  PubMed  Google Scholar 

  88. Wu Y et al (2011) Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals 19(3):163–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. El-Yamany NA et al (2017) Graphene oxide nanosheets induced genotoxicity and pulmonary injury in mice. Exp Toxicol Pathol 69(6):383–392

    Article  CAS  PubMed  Google Scholar 

  90. Jaworski S, Strojny B (2019) Degradation of mitochondria and oxidative stress as the main mechanism of toxicity of pristine graphene on U87 glioblastoma cells and tumors and HS-5 cells. Int J Mol Sci 20(3):650

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 81771979), and the Applied Basic Research Programs of Science and Technology Commission Foundation of Tianjin (18JCYBJC27400). The support from the Royal Society (UK) for International Exchanges (IEC\NSFC\181045) is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by FC and KL. The first draft of the manuscript was written by FC. Formal analysis and investigation: XL; Supervision, data curation and software: LX; Conceptualization, Methodology, Writing—review and editing: JH; Conceptualization, resources, writing—review and editing: ZY. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhuo Yang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11064_2020_3167_MOESM1_ESM.tif

Fig. S1 The expressions of SOD1 and SIRT1 in the hippocampal of four groups. (A) The immunoreactive bands of SOD1 (16 kDa), SIRT1 (110 kDa) and β-actin (43 kDa) in the hippocampal tissues. (B) Quantitative analysis of the optical density ratio of western blot densities of SOD1. (C) Quantitative analysis of the optical density ratio of western blot densities of SIRT1. The expression of proteins in western blots are normalized with β-actin. Data are presented as mean ± SEM (n = 3 per group). *p < 0.05, **p < 0.01, ***p < 0.001, compared with WT+PBS group; #p < 0.05, compared with the AD+PBS group. Supplementary file1 (TIF 605 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, F., Li, K., Li, X. et al. Graphene Oxide Ameliorates the Cognitive Impairment Through Inhibiting PI3K/Akt/mTOR Pathway to Induce Autophagy in AD Mouse Model. Neurochem Res 46, 309–325 (2021). https://doi.org/10.1007/s11064-020-03167-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03167-z

Keywords

Navigation