Skip to main content

Advertisement

Log in

Looking for Drugs in All the Wrong Places: Use of GCPII Inhibitors Outside the Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In tribute to our friend and colleague Michael Robinson, we review his involvement in the identification, characterization and localization of the metallopeptidase glutamate carboxypeptidase II (GCPII), originally called NAALADase. While Mike was characterizing NAALADase in the brain, the protein was independently identified by other laboratories in human prostate where it was termed prostate specific membrane antigen (PSMA) and in the intestines where it was named Folate Hydrolase 1 (FOLH1). It was almost a decade to establish that NAALADase, PSMA, and FOLH1 are encoded by the same gene. The enzyme has emerged as a therapeutic target outside of the brain, with the most notable progress made in the treatment of prostate cancer and inflammatory bowel disease (IBD). PSMA-PET imaging with high affinity ligands is proving useful for the clinical diagnosis and staging of prostate cancer. A molecular radiotherapy based on similar ligands is in trials for metastatic castration-resistant prostate cancer. New PSMA inhibitor prodrugs that preferentially block kidney and salivary gland versus prostate tumor enzyme may improve the clinical safety of this radiotherapy. The wide clinical use of PSMA-PET imaging in prostate cancer has coincidentally led to clinical documentation of GCPII upregulation in a wide variety of tumors and inflammatory diseases, likely associated with angiogenesis. In IBD, expression of the FOLH1 gene that codes for GCPII is strongly upregulated, as is the enzymatic activity in diseased patient biopsies. In animal models of IBD, GCPII inhibitors show substantial efficacy, suggesting potential theranostic use of GCPII ligands for IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Robinson MB, Blakely RD, Coyle JT (1986) Quisqualate selectively inhibits a brain peptidase which cleaves N-acetyl-L-aspartyl-L-glutamate in vitro. Eur J Pharmacol 130(3):345–347

    Article  CAS  PubMed  Google Scholar 

  2. Coyle JT, Blakely R, Zaczek R, Koller KJ, Abreu M, Ory-Lavollee L, Fisher R, Carpenter DO (1986) Acidic peptides in brain: do they act at putative glutamatergic synapses? Adv Exp Med Biol 203:375–384. https://doi.org/10.1007/978-1-4684-7971-3_28

    Article  CAS  PubMed  Google Scholar 

  3. Ffrench-Mullen JM, Koller K, Zaczek R, Coyle JT, Hori N, Carpenter DO (1985) N-Acetylaspartylglutamate: possible role as the neurotransmitter of the lateral olfactory tract. Proc Natl Acad Sci USA 82(11):3897–3900. https://doi.org/10.1073/pnas.82.11.3897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blakely RD, Robinson MB, Thompson RC, Coyle JT (1988) Hydrolysis of the brain dipeptide N-acetyl-L-aspartyl-L-glutamate: subcellular and regional distribution, ontogeny, and the effect of lesions on N-acetylated-alpha-linked acidic dipeptidase activity. J Neurochem 50(4):1200–1209

    Article  CAS  PubMed  Google Scholar 

  5. Robinson MB, Blakely RD, Couto R, Coyle JT (1987) Hydrolysis of the brain dipeptide N-acetyl-L-aspartyl-L-glutamate. Identification and characterization of a novel N-acetylated alpha-linked acidic dipeptidase activity from rat brain. J Biol Chem 262(30):14498–14506

    CAS  PubMed  Google Scholar 

  6. Slusher BS, Robinson MB, Tsai GC, Simmons ML, Richards SS, Coyle JT (1990) Rat-brain N-acetylated alpha-linked acidic dipeptidase activity—purification and immunological characterization. J Biol Chem 265(34):21297–21301

    CAS  PubMed  Google Scholar 

  7. Slusher BS, Tsai G, Yoo G, Coyle JT (1992) Immunocytochemical localization of the N-acetyl-aspartyl-glutamate (Naag) hydrolyzing enzyme N-acetylated alpha-linked acidic dipeptidase (Naaladase). J Comp Neurol 315(2):217–229

    Article  CAS  PubMed  Google Scholar 

  8. Berger UV, Carter RE, Mckee M, Coyle JT (1995) N-acetylated alpha-linked acidic dipeptidase is expressed by non-myelinating schwann-cells in the peripheral nervous-system. J Neurocytol 24(2):99–109. https://doi.org/10.1007/Bf01181553

    Article  CAS  PubMed  Google Scholar 

  9. Berger UV, Luthi-Carter R, Passani LA, Elkabes S, Black I, Konradi C, Coyle JT (1999) Glutamate carboxypeptidase II is expressed by astrocytes in the adult rat nervous system. J Comp Neurol 415(1):52–64. https://doi.org/10.1002/(Sici)1096-9861(19991206)415:1%3c52:Aid-Cne4%3e3.0.Co;2-K

    Article  CAS  PubMed  Google Scholar 

  10. Horoszewicz JS, Kawinski E, Murphy GP (1987) Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res 7(5B):927–935

    CAS  PubMed  Google Scholar 

  11. Israeli RS, Powell CT, Fair WR, Heston WD (1993) Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res 53(2):227–230

    CAS  PubMed  Google Scholar 

  12. Israeli RS, Powell CT, Corr JG, Fair WR, Heston WD (1994) Expression of the prostate-specific membrane antigen. Cancer Res 54(7):1807–1811

    CAS  PubMed  Google Scholar 

  13. Wynant GE, Murphy GP, Horoszewicz JS, Neal CE, Collier BD, Mitchell E, Purnell G, Tyson I, Heal A, Abdel-Nabi H et al (1991) Immunoscintigraphy of prostatic cancer: preliminary results with 111In-labeled monoclonal antibody 7E11-C5.3 (CYT-356). Prostate 18(3):229–241

    Article  CAS  PubMed  Google Scholar 

  14. Pinto JT, Suffoletto BP, Berzin TM, Qiao CH, Lin S, Tong WP, May F, Mukherjee B, Heston WD (1996) Prostate-specific membrane antigen: a novel folate hydrolase in human prostatic carcinoma cells. Clin Cancer Res 2(9):1445–1451

    CAS  PubMed  Google Scholar 

  15. Troyer JK, Beckett ML, Wright GL Jr (1995) Detection and characterization of the prostate-specific membrane antigen (PSMA) in tissue extracts and body fluids. Int J Cancer 62(5):552–558

    Article  CAS  PubMed  Google Scholar 

  16. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3(1):81–85

    CAS  PubMed  Google Scholar 

  17. Lai CL, van den Ham R, van Leenders G, van der Lugt J, Mol JA, Teske E (2008) Histopathological and immunohistochemical characterization of canine prostate cancer. Prostate 68(5):477–488. https://doi.org/10.1002/pros.20720

    Article  PubMed  Google Scholar 

  18. O’Keefe DS, Bacich DJ, Huang SS, Heston WDW (2018) A perspective on the evolving story of PSMA biology, PSMA-based imaging, and endoradiotherapeutic strategies. J Nucl Med 59(7):1007–1013. https://doi.org/10.2967/jnumed.117.203877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bzdega T, Turi T, Wroblewska B, She D, Chung HS, Kim H, Neale JH (1997) Molecular cloning of a peptidase against N-acetylaspartylglutamate from a rat hippocampal cDNA library. J Neurochem 69(6):2270–2277. https://doi.org/10.1046/j.1471-4159.1997.69062270.x

    Article  CAS  PubMed  Google Scholar 

  20. Luthi-Carter R, Barczak AK, Speno H, Coyle JT (1998) Hydrolysis of the neuropeptide N-acetylaspartylglutamate (NAAG) by cloned human glutamate carboxypeptidase II. Brain Res 795(1–2):341–348. https://doi.org/10.1016/s0006-8993(98)00244-3

    Article  CAS  PubMed  Google Scholar 

  21. Luthi-Carter R, Berger UV, Barczak AK, Enna M, Coyle JT (1998) Isolation and expression of a rat brain cDNA encoding glutamate carboxypeptidase II. Proc Natl Acad Sci USA 95(6):3215–3220. https://doi.org/10.1073/pnas.95.6.3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carter RE, Feldman AR, Coyle JT (1996) Prostate-specific membrane antigen is a hydrolase with substrate and pharmacologic characteristics of a neuropeptidase. Proc Natl Acad Sci USA 93(2):749–753. https://doi.org/10.1073/pnas.93.2.749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hlouchova K, Barinka C, Konvalinka J, Lubkowski J (2009) Structural insight into the evolutionary and pharmacologic homology of glutamate carboxypeptidases II and III. FEBS J 276(16):4448–4462. https://doi.org/10.1111/j.1742-4658.2009.07152.x

    Article  CAS  PubMed  Google Scholar 

  24. Hlouchova K, Navratil V, Tykvart J, Sacha P, Konvalinka J (2012) GCPII variants, paralogs and orthologs. Curr Med Chem 19(9):1316–1322. https://doi.org/10.2174/092986712799462676

    Article  CAS  PubMed  Google Scholar 

  25. Jackson PF, Cole DC, Slusher BS, Stetz SL, Ross LE, Donzanti BA, Trainor DA (1996) Design, synthesis, and biological activity of a potent inhibitor of the neuropeptidase N-acetylated alpha-linked acidic dipeptidase. J Med Chem 39(2):619–622. https://doi.org/10.1021/jm950801q

    Article  CAS  PubMed  Google Scholar 

  26. Slusher BS, Vornov JJ, Thomas AG, Hurn PD, Harukuni I, Bhardwaj A, Traystman RJ, Robinson MB, Britton P, Lu XC, Tortella FC, Wozniak KM, Yudkoff M, Potter BM, Jackson PF (1999) Selective inhibition of NAALADase, which converts NAAG to glutamate, reduces ischemic brain injury. Nat Med 5(12):1396–1402. https://doi.org/10.1038/70971

    Article  CAS  PubMed  Google Scholar 

  27. Barinka C, Rojas C, Slusher B, Pomper M (2012) Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer. Curr Med Chem 19(6):856–870. https://doi.org/10.2174/092986712799034888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barinka C, Starkova J, Konvalinka J, Lubkowski J (2007) A high-resolution structure of ligand-free human glutamate carboxypeptidase II. Acta Crystallogr Sect F 63(Pt 3):150–153. https://doi.org/10.1107/S174430910700379X

    Article  CAS  Google Scholar 

  29. Mesters JR, Henning K, Hilgenfeld R (2007) Human glutamate carboxypeptidase II inhibition: structures of GCPII in complex with two potent inhibitors, quisqualate and 2-PMPA. Acta Crystallogr D Biol Crystallogr 63(Pt 4):508–513. https://doi.org/10.1107/S090744490700902X

    Article  CAS  PubMed  Google Scholar 

  30. Vornov JJ, Hollinger KR, Jackson PF, Wozniak KM, Farah MH, Majer P, Rais R, Slusher BS (2016) Still NAAG’ing after all these years: the continuing pursuit of GCPII inhibitors. Adv Pharmacol 76:215–255. https://doi.org/10.1016/bs.apha.2016.01.007

    Article  CAS  PubMed  Google Scholar 

  31. van der Post JP, de Visser SJ, de Kam ML, Woelfler M, Hilt DC, Vornov J, Burak ES, Bortey E, Slusher BS, Limsakun T, Cohen AF, van Gerven JM (2005) The central nervous system effects, pharmacokinetics and safety of the NAALADase-inhibitor GPI 5693. Br J Clin Pharmacol 60(2):128–136. https://doi.org/10.1111/j.1365-2125.2005.02396.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nedelcovych M, Dash RP, Tenora L, Zimmermann SC, Gadiano AJ, Garrett C, Alt J, Hollinger KR, Pommier E, Jancarik A, Rojas C, Thomas AG, Wu Y, Wozniak K, Majer P, Slusher BS, Rais R (2017) Enhanced brain delivery of 2-(Phosphonomethyl)pentanedioic acid following intranasal administration of its gamma-substituted ester prodrugs. Mol Pharm 14(10):3248–3257. https://doi.org/10.1021/acs.molpharmaceut.7b00231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dash RP, Tichý T, Veeravalli V, Lam J, Alt J, Wu Y, Tenora L, Majer P, Slusher BS, Rais R (2019) Enhanced oral bioavailability of 2-(phosphonomethyl)-pentanedioic acid (2-PMPA) from its (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl (ODOL)-based prodrugs. Mol Pharm 16(10):4292–4301. https://doi.org/10.1021/acs.molpharmaceut.9b00637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rais R, Wozniak K, Wu Y, Niwa M, Stathis M, Alt J, Giroux M, Sawa A, Rojas C, Slusher BS (2015) Selective CNS uptake of the GCP-II inhibitor 2-PMPA following intranasal administration. PLoS ONE 10(7):e0131861. https://doi.org/10.1371/journal.pone.0131861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bouchelouche K, Turkbey B, Choyke PL (2016) PSMA PET and radionuclide therapy in prostate cancer. Sem Nuclear Med 46(6):522–535. https://doi.org/10.1053/j.semnuclmed.2016.07.006

    Article  Google Scholar 

  36. Ristau BT, O’Keefe DS, Bacich DJ (2014) The prostate-specific membrane antigen: lessons and current clinical implications from 20 years of research. Urol Oncol 32(3):272–279. https://doi.org/10.1016/j.urolonc.2013.09.003

    Article  PubMed  Google Scholar 

  37. Afshar-Oromieh A, Malcher A, Eder M, Eisenhut M, Linhart HG, Hadaschik BA, Holland-Letz T, Giesel FL, Kratochwil C, Haufe S, Haberkorn U, Zechmann CM (2013) PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging 40(4):486–495. https://doi.org/10.1007/s00259-012-2298-2

    Article  CAS  PubMed  Google Scholar 

  38. Afshar-Oromieh A, Babich JW, Kratochwil C, Giesel FL, Eisenhut M, Kopka K, Haberkorn U (2016) The rise of PSMA ligands for diagnosis and therapy of prostate cancer. J Nucl Med 57(Suppl 3):79s–89s. https://doi.org/10.2967/jnumed.115.170720

    Article  CAS  PubMed  Google Scholar 

  39. Sawicki LM, Kirchner J, Buddensieck C, Antke C, Ullrich T, Schimmoller L, Boos J, Schleich C, Schaarschmidt BM, Buchbender C, Heusch P, Rabenalt R, Albers P, Antoch G, Muller HW, Hautzel H (2019) Prospective comparison of whole-body MRI and (68)Ga-PSMA PET/CT for the detection of biochemical recurrence of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging 46(7):1542–1550. https://doi.org/10.1007/s00259-019-04308-5

    Article  CAS  PubMed  Google Scholar 

  40. Uprimny C (2019) (68)Ga-PSMA-11 PET/CT: the rising star of nuclear medicine in prostate cancer imaging? Wien Med Wochenschr 169(1–2):3–11. https://doi.org/10.1007/s10354-017-0569-z

    Article  PubMed  Google Scholar 

  41. Fendler WP, Rahbar K, Herrmann K, Kratochwil C, Eiber M (2017) (177)Lu-PSMA radioligand therapy for prostate cancer. J Nucl Med 58(8):1196–1200. https://doi.org/10.2967/jnumed.117.191023

    Article  CAS  PubMed  Google Scholar 

  42. Kratochwil C, Bruchertseifer F, Rathke H, Hohenfellner M, Giesel FL, Haberkorn U, Morgenstern A (2018) Targeted alpha-therapy of metastatic castration-resistant prostate cancer with (225)Ac-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor control. J Nucl Med 59(5):795–802. https://doi.org/10.2967/jnumed.117.203539

    Article  CAS  PubMed  Google Scholar 

  43. von Eyben FE, Roviello G, Kiljunen T, Uprimny C, Virgolini I, Kairemo K, Joensuu T (2017) Third-line treatment and (177)Lu-PSMA radioligand therapy of metastatic castration-resistant prostate cancer: a systematic review. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-017-3895-x

    Article  Google Scholar 

  44. Eiber M, Fendler WP, Rowe SP, Calais J, Hofman MS, Maurer T, Schwarzenboeck SM, Kratowchil C, Herrmann K, Giesel FL (2017) Prostate-specific membrane antigen ligands for imaging and therapy. J Nucl Med 58(Suppl 2):67s–76s. https://doi.org/10.2967/jnumed.116.186767

    Article  CAS  PubMed  Google Scholar 

  45. Virgolini I, Decristoforo C, Haug A, Fanti S, Uprimny C (2018) Current status of theranostics in prostate cancer. Eur J Nucl Med Mol Imaging 45(3):471–495. https://doi.org/10.1007/s00259-017-3882-2

    Article  PubMed  Google Scholar 

  46. Kratochwil C, Giesel FL, Stefanova M, Benesova M, Bronzel M, Afshar-Oromieh A, Mier W, Eder M, Kopka K, Haberkorn U (2016) PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-labeled PSMA-617. J Nucl Med 57(8):1170–1176. https://doi.org/10.2967/jnumed.115.171397

    Article  CAS  PubMed  Google Scholar 

  47. Rahbar K, Ahmadzadehfar H, Kratochwil C, Haberkorn U, Schafers M, Essler M, Baum RP, Kulkarni HR, Schmidt M, Drzezga A, Bartenstein P, Pfestroff A, Luster M, Lutzen U, Marx M, Prasad V, Brenner W, Heinzel A, Mottaghy FM, Ruf J, Meyer PT, Heuschkel M, Eveslage M, Bogemann M, Fendler WP, Krause BJ (2017) German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med 58(1):85–90. https://doi.org/10.2967/jnumed.116.183194

    Article  CAS  PubMed  Google Scholar 

  48. Hofman MS, Violet J, Hicks RJ, Ferdinandus J, Ping Thang S, Akhurst T, Iravani A, Kong G, Ravi Kumar A, Murphy DG, Eu P, Jackson P, Scalzo M, Williams SG, Sandhu S (2018) [(177)Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. https://doi.org/10.1016/s1470-2045(18)30198-0

    Article  PubMed  Google Scholar 

  49. Taieb D, Foletti JM, Bardies M, Rocchi P, Hicks R, Haberkorn U (2018) PSMA-targeted radionuclide therapy and salivary gland toxicity: why does it matter? J Nucl Med. https://doi.org/10.2967/jnumed.118.207993

    Article  PubMed  Google Scholar 

  50. Kabasakal L, AbuQbeitah M, Aygun A, Yeyin N, Ocak M, Demirci E, Toklu T (2015) Pre-therapeutic dosimetry of normal organs and tissues of (177)Lu-PSMA-617 prostate-specific membrane antigen (PSMA) inhibitor in patients with castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 42(13):1976–1983. https://doi.org/10.1007/s00259-015-3125-3

    Article  CAS  PubMed  Google Scholar 

  51. Delker A, Fendler WP, Kratochwil C, Brunegraf A, Gosewisch A, Gildehaus FJ, Tritschler S, Stief CG, Kopka K, Haberkorn U, Bartenstein P, Boning G (2016) Dosimetry for (177)Lu-DKFZ-PSMA-617: a new radiopharmaceutical for the treatment of metastatic prostate cancer. Eur J Nucl Med Mol Imaging 43(1):42–51. https://doi.org/10.1007/s00259-015-3174-7

    Article  CAS  PubMed  Google Scholar 

  52. Zechmann CM, Afshar-Oromieh A, Armor T, Stubbs JB, Mier W, Hadaschik B, Joyal J, Kopka K, Debus J, Babich JW, Haberkorn U (2014) Radiation dosimetry and first therapy results with a (124)I/(131)I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging 41(7):1280–1292. https://doi.org/10.1007/s00259-014-2713-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kratochwil C, Bruchertseifer F, Rathke H, Bronzel M, Apostolidis C, Weichert W, Haberkorn U, Giesel FL, Morgenstern A (2017) Targeted alpha therapy of mCRPC with 225actinium-PSMA-617: dosimetry estimate and empirical dose finding. J Nucl Med. https://doi.org/10.2967/jnumed.117.191395

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chatalic KL, Heskamp S, Konijnenberg M, Molkenboer-Kuenen JD, Franssen GM, Clahsen-van Groningen MC, Schottelius M, Wester HJ, van Weerden WM, Boerman OC, de Jong M (2016) Towards personalized treatment of prostate cancer: PSMA I&T, a promising prostate-specific membrane antigen-targeted theranostic agent. Theranostics 6(6):849–861. https://doi.org/10.7150/thno.14744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maurer T, Eiber M, Schwaiger M, Gschwend JE (2016) Current use of PSMA-PET in prostate cancer management. Nat Rev Urol 13(4):226–235. https://doi.org/10.1038/nrurol.2016.26

    Article  CAS  PubMed  Google Scholar 

  56. Kulkarni H, Schuchardt C, Singh A, Langbein T, Baum R (2018) Early initiation of Lu-177 PSMA radioligand therapy prolongs overall survival in metastatic prostate cancer. J Nuclear Med 59(supplement 1):529

    Google Scholar 

  57. Kratochwil C, Giesel FL, Leotta K, Eder M, Hoppe-Tich T, Youssoufian H, Kopka K, Babich JW, Haberkorn U (2015) PMPA for nephroprotection in PSMA-targeted radionuclide therapy of prostate cancer. J Nucl Med 56(2):293–298. https://doi.org/10.2967/jnumed.114.147181

    Article  CAS  PubMed  Google Scholar 

  58. Lemberg KM, Vornov JJ, Rais R, Slusher BS (2018) We’re not “DON” yet: optimal dosing and prodrug delivery of 6-diazo-5-oxo-L-norleucine. Mol Cancer Ther 17(9):1824–1832. https://doi.org/10.1158/1535-7163.MCT-17-1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nguyen T, Kirsch BJ, Asaka R, Nabi K, Quinones A, Tan J, Antonio MJ, Camelo F, Li T, Nguyen S, Hoang G, Nguyen K, Udupa S, Sazeides C, Shen YA, Elgogary A, Reyes J, Zhao L, Kleensang A, Chaichana KL, Hartung T, Betenbaugh MJ, Marie SK, Jung JG, Wang TL, Gabrielson E, Le A (2019) Uncovering the role of N-acetyl-aspartyl-glutamate as a glutamate reservoir in cancer. Cell Rep 27(2):491–501. https://doi.org/10.1016/j.celrep.2019.03.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kaittanis C, Andreou C, Hieronymus H, Mao N, Foss CA, Eiber M, Weirich G, Panchal P, Gopalan A, Zurita J, Achilefu S, Chiosis G, Ponomarev V, Schwaiger M, Carver BS, Pomper MG, Grimm J (2018) Prostate-specific membrane antigen cleavage of vitamin B9 stimulates oncogenic signaling through metabotropic glutamate receptors. J Exp Med 215(1):159–175. https://doi.org/10.1084/jem.20171052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chang SS, Reuter VE, Heston WD, Bander NH, Grauer LS, Gaudin PB (1999) Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res 59(13):3192–3198

    CAS  PubMed  Google Scholar 

  62. Liu H, Moy P, Kim S, Xia Y, Rajasekaran A, Navarro V, Knudsen B, Bander NH (1997) Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res 57(17):3629–3634

    CAS  PubMed  Google Scholar 

  63. Schmidt LH, Heitkotter B, Schulze AB, Schliemann C, Steinestel K, Trautmann M, Marra A, Hillejan L, Mohr M, Evers G, Wardelmann E, Rahbar K, Gorlich D, Lenz G, Berdel WE, Hartmann W, Wiewrodt R, Huss S (2017) Prostate specific membrane antigen (PSMA) expression in non-small cell lung cancer. PLoS ONE 12(10):e0186280. https://doi.org/10.1371/journal.pone.0186280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Heitkotter B, Trautmann M, Grunewald I, Bogemann M, Rahbar K, Gevensleben H, Wardelmann E, Hartmann W, Steinestel K, Huss S (2017) Expression of PSMA in tumor neovasculature of high grade sarcomas including synovial sarcoma, rhabdomyosarcoma, undifferentiated sarcoma and MPNST. Oncotarget 8(3):4268–4276. https://doi.org/10.18632/oncotarget.13994

    Article  PubMed  Google Scholar 

  65. Conway RE, Petrovic N, Li Z, Heston W, Wu D, Shapiro LH (2006) Prostate-specific membrane antigen regulates angiogenesis by modulating integrin signal transduction. Mol Cell Biol 26(14):5310–5324. https://doi.org/10.1128/MCB.00084-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Conway RE, Joiner K, Patterson A, Bourgeois D, Rampp R, Hannah BC, McReynolds S, Elder JM, Gilfilen H, Shapiro LH (2013) Prostate specific membrane antigen produces pro-angiogenic laminin peptides downstream of matrix metalloprotease-2. Angiogenesis 16(4):847–860. https://doi.org/10.1007/s10456-013-9360-y

    Article  CAS  PubMed  Google Scholar 

  67. Conway RE, Rojas C, Alt J, Novakova Z, Richardson SM, Rodrick TC, Fuentes JL, Richardson NH, Attalla J, Stewart S, Fahmy B, Barinka C, Ghosh M, Shapiro LH, Slusher BS (2016) Prostate-specific membrane antigen (PSMA)-mediated laminin proteolysis generates a pro-angiogenic peptide. Angiogenesis 19(4):487–500. https://doi.org/10.1007/s10456-016-9521-x

    Article  CAS  PubMed  Google Scholar 

  68. Backhaus P, Noto B, Avramovic N, Grubert LS, Huss S, Bogemann M, Stegger L, Weckesser M, Schafers M, Rahbar K (2018) Targeting PSMA by radioligands in non-prostate disease-current status and future perspectives. Eur J Nucl Med Mol Imaging 45(5):860–877. https://doi.org/10.1007/s00259-017-3922-y

    Article  CAS  PubMed  Google Scholar 

  69. Juptner M, Marx M, Zuhayra M, Lutzen U (2019) Experimental 177Lu-PSMA-617 radioligand therapy in a patient with extended metastasized leiomyosarcoma. Nuklearmedizin. https://doi.org/10.1055/a-0914-2486

    Article  PubMed  Google Scholar 

  70. Mahalingam D, Peguero J, Cen P, Arora SP, Sarantopoulos J, Rowe J, Allgood V, Tubb B, Campos L (2019) A phase II, multicenter, single-arm study of mipsagargin (G-202) as a second-line therapy following sorafenib for adult patients with progressive advanced hepatocellular carcinoma. Cancers (Basel) 11(6):833. https://doi.org/10.3390/cancers11060833

    Article  CAS  Google Scholar 

  71. Nomura N, Pastorino S, Jiang P, Lambert G, Crawford JR, Gymnopoulos M, Piccioni D, Juarez T, Pingle SC, Makale M, Kesari S (2014) Prostate specific membrane antigen (PSMA) expression in primary gliomas and breast cancer brain metastases. Cancer Cell Int 14(1):26. https://doi.org/10.1186/1475-2867-14-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pillai MRA, Nanabala R, Joy A, Sasikumar A, Russ Knapp FF (2016) Radiolabeled enzyme inhibitors and binding agents targeting PSMA: effective theranostic tools for imaging and therapy of prostate cancer. Nucl Med Biol 43(11):692–720. https://doi.org/10.1016/j.nucmedbio.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  73. Schwenck J, Tabatabai G, Skardelly M, Reischl G, Beschorner R, Pichler B, la Fougere C (2015) In vivo visualization of prostate-specific membrane antigen in glioblastoma. Eur J Nucl Med Mol I 42(1):170–171. https://doi.org/10.1007/s00259-014-2921-5

    Article  Google Scholar 

  74. Rischpler C, Beck TI, Okamoto S, Schlitter AM, Knorr K, Schwaiger M, Gschwend J, Maurer T, Meyer PT, Eiber M (2018) (68)Ga-PSMA-HBED-CC uptake in cervical, celiac, and sacral ganglia as an important pitfall in prostate cancer PET imaging. J Nucl Med 59(9):1406–1411. https://doi.org/10.2967/jnumed.117.204677

    Article  CAS  PubMed  Google Scholar 

  75. Ebenezer GJ, McArthur JC, Thomas D, Murinson B, Hauer P, Polydefkis M, Griffin JW (2007) Denervation of skin in neuropathies: the sequence of axonal and Schwann cell changes in skin biopsies. Brain 130(Pt 10):2703–2714. https://doi.org/10.1093/brain/awm199

    Article  PubMed  Google Scholar 

  76. Kinoshita Y, Kuratsukuri K, Landas S, Imaida K, Rovito PM Jr, Wang CY, Haas GP (2006) Expression of prostate-specific membrane antigen in normal and malignant human tissues. World J Surg 30(4):628–636. https://doi.org/10.1007/s00268-005-0544-5

    Article  PubMed  Google Scholar 

  77. Zhang T, Song B, Zhu W, Xu X, Gong QQ, Morando C, Dassopoulos T, Newberry RD, Hunt SR, Li E (2012) An ileal Crohn’s disease gene signature based on whole human genome expression profiles of disease unaffected ileal mucosal biopsies. PLoS ONE 7(5):e37139. https://doi.org/10.1371/journal.pone.0037139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Halsted CH, Baugh CM, Butterworth CE Jr (1975) Jejunal perfusion of simple and conjugated folates in man. Gastroenterology 68(2):261–269

    Article  CAS  PubMed  Google Scholar 

  79. Halsted CH, Reisenauer AM, Shane B, Tamura T (1978) Availability of monoglutamyl and polyglutamyl folates in normal subjects and in patients with coeliac sprue. Gut 19(10):886–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hoffbrand AV, Douglas AP, Fry L, Stewart JS (1970) Malabsorption of dietary folate (Pteroylpolyglutamates) in adult coeliac disease and dermatitis herpetiformis. Br Med J 4(5727):85–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Devlin AM, Ling EH, Peerson JM, Fernando S, Clarke R, Smith AD, Halsted CH (2000) Glutamate carboxypeptidase II: a polymorphism associated with lower levels of serum folate and hyperhomocysteinemia. Hum Mol Genet 9(19):2837–2844

    Article  CAS  PubMed  Google Scholar 

  82. Lievers KJ, Kluijtmans LA, Boers GH, Verhoef P, den Heijer M, Trijbels FJ, Blom HJ (2002) Influence of a glutamate carboxypeptidase II (GCPII) polymorphism (1561C– > T) on plasma homocysteine, folate and vitamin B(12) levels and its relationship to cardiovascular disease risk. Atherosclerosis 164(2):269–273

    Article  CAS  PubMed  Google Scholar 

  83. Vargas-Martinez C, Ordovas JM, Wilson PW, Selhub J (2002) The glutamate carboxypeptidase gene II (C > T) polymorphism does not affect folate status in the Framingham Offspring cohort. J Nutr 132(6):1176–1179. https://doi.org/10.1093/jn/132.6.1176

    Article  CAS  PubMed  Google Scholar 

  84. Afman LA, Trijbels FJ, Blom HJ (2003) The H475Y polymorphism in the glutamate carboxypeptidase II gene increases plasma folate without affecting the risk for neural tube defects in humans. J Nutr 133(1):75–77. https://doi.org/10.1093/jn/133.1.75

    Article  CAS  PubMed  Google Scholar 

  85. Chen J, Kyte C, Valcin M, Chan W, Wetmur JG, Selhub J, Hunter DJ, Ma J (2004) Polymorphisms in the one-carbon metabolic pathway, plasma folate levels and colorectal cancer in a prospective study. Int J Cancer 110(4):617–620. https://doi.org/10.1002/ijc.20148

    Article  CAS  PubMed  Google Scholar 

  86. Devlin AM, Clarke R, Birks J, Evans JG, Halsted CH (2006) Interactions among polymorphisms in folate-metabolizing genes and serum total homocysteine concentrations in a healthy elderly population. Am J Clin Nutr 83(3):708–713. https://doi.org/10.1093/ajcn.83.3.708

    Article  CAS  PubMed  Google Scholar 

  87. Halsted CH, Wong DH, Peerson JM, Warden CH, Refsum H, Smith AD, Nygard OK, Ueland PM, Vollset SE, Tell GS (2007) Relations of glutamate carboxypeptidase II (GCPII) polymorphisms to folate and homocysteine concentrations and to scores of cognition, anxiety, and depression in a homogeneous Norwegian population: the Hordaland Homocysteine Study. Am J Clin Nutr 86(2):514–521. https://doi.org/10.1093/ajcn/86.2.514

    Article  CAS  PubMed  Google Scholar 

  88. Mir MM, Dar JA, Dar NA, Dar MS, Salam I, Lone MM, Chowdary NA (2008) Combined impact of polymorphism of folate metabolism genes; glutamate carboxypeptidase, methylene tetrahydrofolate reductase and methionine synthase reductase on breast cancer susceptibility in kashmiri women. Int J Health Sci 2(1):3–14

    Google Scholar 

  89. Navratil M, Ptacek J, Sacha P, Starkova J, Lubkowski J, Barinka C, Konvalinka J (2014) Structural and biochemical characterization of the folyl-poly-gamma-l-glutamate hydrolyzing activity of human glutamate carboxypeptidase II. FEBS J 281(14):3228–3242. https://doi.org/10.1111/febs.12857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ben-Shachar S, Yanai H, Baram L, Elad H, Meirovithz E, Ofer A, Brazowski E, Tulchinsky H, Pasmanik-Chor M, Dotan I (2013) Gene expression profiles of ileal inflammatory bowel disease correlate with disease phenotype and advance understanding of its immunopathogenesis. Inflamm Bowel Dis 19(12):2509–2521. https://doi.org/10.1097/01.MIB.0000437045.26036.00

    Article  PubMed  Google Scholar 

  91. Noble CL, Abbas AR, Lees CW, Cornelius J, Toy K, Modrusan Z, Clark HF, Arnott ID, Penman ID, Satsangi J, Diehl L (2010) Characterization of intestinal gene expression profiles in Crohn’s disease by genome-wide microarray analysis. Inflamm Bowel Dis 16(10):1717–1728. https://doi.org/10.1002/ibd.21263

    Article  PubMed  Google Scholar 

  92. Rais R, Jiang W, Zhai H, Wozniak KM, Stathis M, Hollinger KR, Thomas AG, Rojas C, Vornov JJ, Marohn M, Li X, Slusher BS (2016) FOLH1/GCPII is elevated in IBD patients, and its inhibition ameliorates murine IBD abnormalities. JCI Insight. https://doi.org/10.1172/jci.insight.88634

    Article  PubMed  PubMed Central  Google Scholar 

  93. Date AA, Rais R, Babu T, Ortiz J, Kanvinde P, Thomas AG, Zimmermann SC, Gadiano AJ, Halpert G, Slusher BS, Ensign LM (2017) Local enema treatment to inhibit FOLH1/GCPII as a novel therapy for inflammatory bowel disease. J Control Release 263:132–138. https://doi.org/10.1016/j.jconrel.2017.01.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Klingenberg S, Jochumsen MR, Nielsen TF, Bouchelouche K (2019) 68Ga-PSMA uptake in anal fistula on PET/CT scan. Clin Nucl Med 44(1):e54–e56. https://doi.org/10.1097/RLU.0000000000002370

    Article  PubMed  Google Scholar 

  95. Ardies PJ, Gykiere P, Goethals L, De Mey J, De Geeter F, Everaert H (2017) PSMA uptake in mediastinal sarcoidosis. Clin Nucl Med 42(4):303–305. https://doi.org/10.1097/RLU.0000000000001543

    Article  PubMed  Google Scholar 

  96. Henninger M, Maurer T, Hacker C, Eiber M (2016) 68Ga-PSMA PET/MR showing intense psma uptake in nodular fasciitis mimicking prostate cancer metastasis. Clin Nucl Med 41(10):e443–444. https://doi.org/10.1097/RLU.0000000000001310

    Article  PubMed  Google Scholar 

  97. Chan M, Hsiao E (2017) Subacute cortical infarct showing uptake on 68Ga-PSMA PET/CT. Clin Nucl Med 42(2):110–111. https://doi.org/10.1097/RLU.0000000000001489

    Article  PubMed  Google Scholar 

  98. Noto B, Vrachimis A, Schafers M, Stegger L, Rahbar K (2016) Subacute stroke mimicking cerebral metastasis in 68Ga-PSMA-HBED-CC PET/CT. Clin Nucl Med 41(10):e449–451. https://doi.org/10.1097/RLU.0000000000001291

    Article  PubMed  Google Scholar 

  99. Sasikumar A, Joy A, Nanabala R, Pillai MR, Hari TA (2016) 68Ga-PSMA PET/CT false-positive tracer uptake in paget disease. Clin Nucl Med 41(10):e454–455. https://doi.org/10.1097/RLU.0000000000001340

    Article  PubMed  Google Scholar 

  100. Panagiotidis E, Paschali A, Giannoula E, Chatzipavlidou V (2019) Rib fractures mimicking bone metastases in 18F-PSMA-1007 PET/CT for prostate cancer. Clin Nucl Med 44(1):e46–e48. https://doi.org/10.1097/RLU.0000000000002354

    Article  PubMed  Google Scholar 

  101. Kirchner J, Schaarschmidt BM, Sawicki LM, Heusch P, Hautzel H, Ermert J, Rabenalt R, Antoch G, Buchbender C (2017) Evaluation of practical interpretation hurdles in 68Ga-PSMA PET/CT in 55 patients: physiological tracer distribution and incidental tracer uptake. Clin Nucl Med 42(7):e322–e327. https://doi.org/10.1097/RLU.0000000000001672

    Article  PubMed  Google Scholar 

  102. Kasoha M, Unger C, Solomayer E-F, Bohle RM, Zaharia C, Khreich F, Wagenpfeil S, Juhasz-Böss I (2017) Prostate-specific membrane antigen (PSMA) expression in breast cancer and its metastases. Clin Exp Metastasis 34(8):479–490

    Article  CAS  PubMed  Google Scholar 

  103. Kumar R, Mittal BR, Bhattacharya A, Singh H, Singh SK (2018) Synchronous detection of male breast cancer and prostatic Cancer in a patient with suspected prostatic carcinoma on 68Ga-PSMA PET/CT imaging. Clin Nuclear Med 43(6):431–432

    Article  Google Scholar 

  104. Tolkach Y, Gevensleben H, Bundschuh R, Koyun A, Huber D, Kehrer C, Hecking T, Keyver-Paik M-D, Kaiser C, Ahmadzadehfar H (2018) Prostate-specific membrane antigen in breast cancer: a comprehensive evaluation of expression and a case report of radionuclide therapy. Breast Cancer Res Treat 169(3):447–455

    Article  CAS  PubMed  Google Scholar 

  105. Passah A, Arora S, Damle NA, Tripathi M, Bal C, Subudhi TK, Arora G (2018) 68Ga-prostate-specific membrane antigen PET/CT in triple-negative breast cancer. Clin Nuclear Med 43(6):460–461

    Article  Google Scholar 

  106. Taywade SK, Damle NA, Bal C (2016) PSMA expression in papillary thyroid carcinoma: opening a new horizon in management of thyroid cancer? Clin Nuclear Med 41(5):e263–265

    Article  Google Scholar 

  107. Sager S, Vatankulu B, Uslu L, Sönmezoglu K (2016) Incidental detection of follicular thyroid carcinoma in 68Ga-PSMA PET/CT imaging. J Nuclear Med Technol 44(3):199–200

    Article  Google Scholar 

  108. Verburg FA, Krohn T, Heinzel A, Mottaghy FM, Behrendt FF (2015) First evidence of PSMA expression in differentiated thyroid cancer using [68Ga] PSMA-HBED-CC PET/CT. Eur J Nuclear Med Mol imaging 42(10):1622

    Article  Google Scholar 

  109. Ren H, Zhang H, Wang X, Liu J, Yuan Z, Hao J (2014) Prostate-specific membrane antigen as a marker of pancreatic cancer cells. Med Oncol 31(3):857

    Article  PubMed  CAS  Google Scholar 

  110. Wang H-l, Wang S-s, Song W-h, Pan Y, Yu H-p, Si T-g, Liu Y, Cui X-n, Guo Z (2015) Expression of prostate-specific membrane antigen in lung cancer cells and tumor neovasculature endothelial cells and its clinical significance. PLoS ONE 10(5):e0125924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Vamadevan S, Le K, Shen L, Ha L, Mansberg R (2017) Incidental prostate-specific membrane antigen uptake in a peripheral nerve sheath tumor. Clin Nuclear Med 42(7):560–562

    Article  Google Scholar 

  112. Rischpler C, Maurer T, Schwaiger M, Eiber M (2016) Intense PSMA-expression using 68Ga-PSMA PET/CT in a paravertebral schwannoma mimicking prostate cancer metastasis. Eur J Nuclear Med Mol Imaging 43(1):193

    Article  Google Scholar 

  113. Artigas C, Alexiou J, Garcia C, Wimana Z, Otte F, Gil T, Van Velthoven R, Flamen P (2016) Paget bone disease demonstrated on (68)Ga-PSMA ligand PET/CT. Eur J Nucl Med Mol Imaging 43(1):195–196

    Article  CAS  PubMed  Google Scholar 

  114. Gykiere P, Goethals L, Everaert H (2016) Healing sacral fracture masquerading as metastatic bone disease on a 68Ga-PSMA PET/CT. Clin Nuclear Med 41(7):e346–347

    Article  Google Scholar 

  115. Hoberück S, Michler E, Kaiser D, Röhnert A, Zöphel K, Kotzerke J (2018) Prostate-specific membrane antigen expression in distal radius fracture. Clin Nuclear Med 43(8):611–613

    Article  Google Scholar 

  116. De Coster L, Sciot R, Everaerts W, Gheysens O, Verscuren R, Deroose CM, Pans S, Van Laere K, Goffin KE (2017) Fibrous dysplasia mimicking bone metastasis on 68 GA-PSMA PET/MRI. Eur J Nuclear Med Mol Imaging 44(9):1607–1608

    Article  Google Scholar 

  117. Kirchner J, Schaarschmidt BM, Sawicki LM, Heusch P, Hautzel H, Ermert J, Rabenalt R, Antoch G, Buchbender C (2017) Evaluation of practical interpretation hurdles in 68Ga-PSMA PET/CT in 55 patients: physiological tracer distribution and incidental tracer uptake. Clin Nuclear Med 42(7):e322–e327

    Article  Google Scholar 

  118. Kobe C, Maintz D, Fischer T, Drzezga A, Chang D-H (2015) Prostate-specific membrane antigen PET/CT in splenic sarcoidosis. Clin Nuclear Med 40(11):897–898

    Article  Google Scholar 

  119. Noto B, Vrachimis A, Schäfers M, Stegger L, Rahbar K (2016) Subacute stroke mimicking cerebral metastasis in 68Ga-PSMA-HBED-CC PET/CT. Clin Nuclear Med 41(10):e449–451

    Article  Google Scholar 

  120. Oh G, Miles K (2018) Subacute cerebellar infarction with uptake on 68Ga-prostate-specific membrane antigen PET/CT. Clin Nuclear Med 43(2):134–135

    Article  Google Scholar 

  121. Daglioz GG, Hekimsoy T, Isgoren S, Sikar AA, Demir H (2017) Uptake of an acrochordon incidentally detected on 68Ga prostate-specific membrane antigen PET/CT. Clin Nuclear Med 42(6):461–462

    Article  Google Scholar 

  122. Gordon IO, Tretiakova MS, Noffsinger AE, Hart J, Reuter VE, Al-Ahmadie HA (2008) Prostate-specific membrane antigen expression in regeneration and repair. Mod Pathol 21(12):1421

    Article  CAS  PubMed  Google Scholar 

  123. Kanthan GL, Hsiao E, Kneebone A, Eade T, Schembri GP (2016) Desmoid tumor showing intense uptake on 68Ga PSMA-HBED-CC PET/CT. Clin Nuclear Med 41(6):508–509

    Article  Google Scholar 

  124. Rischpler C, Beck TI, Okamoto S, Schlitter AM, Knorr K, Schwaiger M, Gschwend J, Maurer T, Meyer PT, Eiber M (2018) 68Ga-PSMA-HBED-CC uptake in cervical, celiac, and sacral ganglia as an important pitfall in prostate cancer PET imaging. J Nuclear Med 59(9):1406–1411

    Article  CAS  Google Scholar 

  125. Zacho HD, Nielsen JB, Dettmann K, Hjulskov SH, Petersen LJ (2017) 68Ga-PSMA PET/CT uptake in intramuscular myxoma imitates prostate cancer metastasis. Clin Nuclear Med 42(6):487–488

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara S. Slusher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: In Honor of Professor Michael Robinson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vornov, J.J., Peters, D., Nedelcovych, M. et al. Looking for Drugs in All the Wrong Places: Use of GCPII Inhibitors Outside the Brain. Neurochem Res 45, 1256–1267 (2020). https://doi.org/10.1007/s11064-019-02909-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02909-y

Keywords

Navigation