Skip to main content
Log in

Hippocampal Up-Regulation of Apolipoprotein D in a Rat Model of Maternal Hypo- and Hyperthyroidism: Implication of Oxidative Stress

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Thyroid disorders impair various functions of the hippocampus where thyroid hormone receptors are localized in the brain. Hyper and hypothyroidism are associated with large changes in brain oxidative stress. Apolipoprotein D (APOD) is a conserved glycoprotein that increased in response to oxidative stress in the brain and has been suggested function as an antioxidant in the brain. Thus, the goal of this work was to explore the effect of maternal hypo- and hyperthyroidism on the Apod expression in the pup’s brain regarding changes in oxidative stress. For induction hypo and hyperthyroidism in adult female rats, 100 ppm propylthiouracil (PTU) and 8 ppm levothyroxine administrated 1 month before copulation to the week 3 after delivery in drinking water. The hippocampal region of rat pups was isolated and used for immunohistochemistry and quantitative RT-PCR on postnatal day (PND)5, PND10 and PND20. Results revealed that APOD over-expressed in both hypo- and hyperthyroid groups on PND5, PND10, and PND20. There was a proportional increase between the Apod expression and oxidative stress in the hyperthyroid group but not the hypothyroid in different days. Regarding the wide functions of thyroid hormones, oxidative stress does not suggest to be the only mechanism that involves Apod gene expression in thyroid disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

THs:

Thyroid hormones

Apod :

Apolipoprotein D mRNA

APOD:

Apolipoprotein D protein

PND:

Postnatal day

PTU:

Propylthiouracil

TAC:

Total antioxidant capacity

MDA:

Malondialdehyde

OS:

Oxidative stress

TBA:

Thiobarbituric acid

PBS:

Phosphate buffered saline

TBS:

Tris-buffered saline

BSA:

Bovine serum albumin

DAB:

3,3-Diaminobenzidine

HRP:

Horseradish peroxidase

DG:

Dentate gyrus

References

  1. Moog NK, Entringer S, Heim C, Wadhwa PD, Kathmann N, Buss C (2017) Influence of maternal thyroid hormones during gestation on fetal brain development. Neuroscience 342:68–100

    Article  CAS  Google Scholar 

  2. Göbel A, Heldmann M, Göttlich M, Dirk A-L, Brabant G, Münte TF (2015) Effect of experimental thyrotoxicosis on brain gray matter: a voxel-based morphometry study. Eur Thyr J 4(Suppl 1):113–118

    Article  Google Scholar 

  3. Rami A, Patel A, Rabie A (1986) Thyroid hormone and development of the rat hippocampus: morphological alterations in granule and pyramidal cells. Neuroscience 19(4):1217–1226

    Article  CAS  Google Scholar 

  4. O'Shaughnessy KL, Thomas SE, Spring SR, Ford JL, Ford RL, Gilbert ME (2019) A transient window of hypothyroidism alters neural progenitor cells and results in abnormal brain development. Sci Rep 9(1):4662–4662. https://doi.org/10.1038/s41598-019-40249-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gilbert M, Sui L, Walker M, Anderson W, Thomas S, Smoller S, Schon J, Phani S, Goodman J (2007) Thyroid hormone insufficiency during brain development reduces parvalbumin immunoreactivity and inhibitory function in the hippocampus. Endocrinology 148(1):92–102

    Article  CAS  Google Scholar 

  6. Madeira MD, Paula-Barbosa MM (1993) Reorganization of mossy fiber synapses in male and female hypothyroid rats: a stereological study. J Comp Neurol 337(2):334–352. https://doi.org/10.1002/cne.903370213

    Article  CAS  PubMed  Google Scholar 

  7. Markowski VP, Zareba G, Stern S, Cox C, Weiss B (2001) Altered operant responding for motor reinforcement and the determination of benchmark doses following perinatal exposure to low-level 2,3,7,8-tetrachlorodibenzo-p-dioxin. Environ Health Perspect 109(6):621–622

    Article  CAS  Google Scholar 

  8. Madeira M, Sousa N, Lima-Andrade M, Calheiros F, Cadete-Leite A, Paula-Barbosa M (1992) Selective vulnerability of the hippocampal pyramidal neurons to hypothyroidism in male and female rats. J Comp Neurol 322(4):501–518

    Article  CAS  Google Scholar 

  9. Lavado-Autric R, Ausó E, García-Velasco JV, del Carmen Arufe M, del Rey FE, Berbel P, de Escobar GM (2003) Early maternal hypothyroxinemia alters histogenesis and cerebral cortex cytoarchitecture of the progeny. J Clinic Investig 111(7):1073–1082

    Article  CAS  Google Scholar 

  10. Taşkın E, Artis AS, Bitiktas S, Dolu N, Liman N, Süer C (2011) Experimentally induced hyperthyroidism disrupts hippocampal long-term potentiation in adult rats. Neuroendocrinology 94(3):218–227

    Article  Google Scholar 

  11. Ahmed OM, El-Gareib A, El-Bakry A, El-Tawab SA, Ahmed R (2008) Thyroid hormones states and brain development interactions. Int J Dev Neurosci 26(2):147–209

    Article  CAS  Google Scholar 

  12. Rego AC, Oliveira CR (2003) Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 28(10):1563–1574

    Article  CAS  Google Scholar 

  13. Mayer L, Romic Ž, Škreb F, Bačic-Vrća V, Čepelak I, Žanic-Grubišić T, Kirin M (2004) Antioxidants in patients with hyperthyroidism. Clin Chem Lab Med 42(2):154–158

    Article  CAS  Google Scholar 

  14. Cano-Europa E, Perez-Severiano F, Vergara P, Ortiz-Butron R, Rios C, Segovia J, Pacheco-Rosado J (2008) Hypothyroidism induces selective oxidative stress in amygdala and hippocampus of rat. Metab Brain Dis 23(3):275–287. https://doi.org/10.1007/s11011-008-9099-0

    Article  CAS  PubMed  Google Scholar 

  15. Domingues JT, Cattani D, Cesconetto PA, Nascimento de Almeida BA, Pierozan P, dos Santos K, Razzera G, Silva FRMB, Pessoa-Pureur R, Zamoner A (2018) Reverse T3 interacts with αvβ3 integrin receptor and restores enzyme activities in the hippocampus of hypothyroid developing rats: insight on signaling mechanisms. Mol Cell Endocrinol 470:281–294. https://doi.org/10.1016/j.mce.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  16. Butler TR, Smith KJ, Self RL, Braden BB, Prendergast MA (2011) Neurodegenerative effects of recombinant HIV-1 Tat(1–86) are associated with inhibition of microtubule formation and oxidative stress-related reductions in microtubule-associated protein-2(a, b). Neurochem Res 36(5):819–828. https://doi.org/10.1007/s11064-011-0409-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Salazar P, Cisternas P, Codocedo JF (1863) Inestrosa NC (2017) Induction of hypothyroidism during early postnatal stages triggers a decrease in cognitive performance by decreasing hippocampal synaptic plasticity. Biochim Biophys Acta (BBA)-Mol Basis Dis 4:870–883. https://doi.org/10.1016/j.bbadis.2017.01.002

    Article  CAS  Google Scholar 

  18. Rassart E, Bedirian A, Do Carmo S, Guinard O, Sirois J, Terrisse L, Milne R (2000) Apolipoprotein d. Biochim Biophys Acta (BBA)-Protein Struct Mol Enzymol 1482(12):185–198

    Article  CAS  Google Scholar 

  19. Bajo-Grañeras R, Sanchez D, Gutierrez G, González C, Do Carmo S, Rassart E, Ganfornina MD (2011) Apolipoprotein D alters the early transcriptional response to oxidative stress in the adult cerebellum. J Neurochem 117(6):949–960

    Article  Google Scholar 

  20. Bhatia S, Jenner AM, Li H, Ruberu K, Spiro AS, Shepherd CE, Kril JJ, Kain N, Don A, Garner B (2013) Increased apolipoprotein D dimer formation in Alzheimer's disease hippocampus is associated with lipid conjugated diene levels. J Alzheimer's Dis 35(3):475–486

    Article  CAS  Google Scholar 

  21. Zhou Y, Wang L, Li R, Liu M, Li X, Su H, Xu Y, Wang H (2018) Secreted glycoprotein BmApoD1 plays a critical role in anti-oxidation and anti-apoptosis in Bombyx mori. Biochem Biophys Res Commun 495(1):839–845

    Article  CAS  Google Scholar 

  22. Dassati S, Waldner A, Schweigreiter R (2014) Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain. Neurobiol Aging 35(7):1632–1642

    Article  CAS  Google Scholar 

  23. Ganfornina MD, Do Carmo S, Lora JM, Torres-Schumann S, Vogel M, Allhorn M, González C, Bastiani MJ, Rassart E, Sanchez D (2008) Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress. Aging Cell 7(4):506–515

    Article  CAS  Google Scholar 

  24. Bhatia S, Knoch B, Wong J, Kim WS, Else PL, Oakley AJ, Garner B (2012) Selective reduction of hydroperoxyeicosatetraenoic acids to their hydroxy derivatives by apolipoprotein D: implications for lipid antioxidant activity and Alzheimer's disease. Biochem J 442(3):713–721

    Article  CAS  Google Scholar 

  25. Li H, Ruberu K, Muñoz SS, Jenner AM, Spiro A, Zhao H, Rassart E, Sanchez D, Ganfornina MD, Karl T (2015) Apolipoprotein D modulates amyloid pathology in APP/PS1 Alzheimer's disease mice. Neurobiol Aging 36(5):1820–1833

    Article  CAS  Google Scholar 

  26. Do Carmo S, Levros LC Jr, Rassart E (2007) Modulation of apolipoprotein D expression and translocation under specific stress conditions. Biochim Biophys Acta 1773(6):954–969. https://doi.org/10.1016/j.bbamcr.2007.03.007

    Article  CAS  PubMed  Google Scholar 

  27. Alvarez ML, Barbón JJ, González LO, Abelairas J, Boto A, Vizoso FJ (2003) Apolipoprotein D expression in retinoblastoma. Ophthalmic Res 35(2):111–116

    Article  CAS  Google Scholar 

  28. Bradley DJ, Young WS, Weinberger C (1989) Differential expression of alpha and beta thyroid hormone receptor genes in rat brain and pituitary. Proc Natl Acad Sci 86(18):7250–7254. https://doi.org/10.1073/pnas.86.18.7250

    Article  CAS  PubMed  Google Scholar 

  29. Terrisse L, Seguin D, Bertrand P, Poirier J, Milne R, Rassart E (1999) Modulation of apolipoprotein D and apolipoprotein E expression in rat hippocampus after entorhinal cortex lesion. Brain Res Mol Brain Res 70(1):26–35

    Article  CAS  Google Scholar 

  30. Shafiee SM, Vafaei AA, Rashidy-Pour A (2016) Effects of maternal hypothyroidism during pregnancy on learning, memory and hippocampal BDNF in rat pups: beneficial effects of exercise. Neuroscience 329:151–161

    Article  CAS  Google Scholar 

  31. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  32. Ohkawa H, Ohishi N, Yagi K (1978) Reaction of linoleic acid hydroperoxide with thiobarbituric acid. J Lipid Res 19(8):1053–1057

    CAS  PubMed  Google Scholar 

  33. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76

    Article  CAS  Google Scholar 

  34. Sanchez D, López-Arias B, Torroja L, Canal I, Wang X, Bastiani MJ, Ganfornina MD (2006) Loss of glial lazarillo, a homolog of apolipoprotein D, reduces lifespan and stress resistance in Drosophila. Curr Biol 16(7):680–686

    Article  CAS  Google Scholar 

  35. Royland JE, Parker JS, Gilbert ME (2008) A genomic analysis of subclinical hypothyroidism in hippocampus and neocortex of the developing rat brain. J Neuroendocrinol 20(12):1319–1338. https://doi.org/10.1111/j.1365-2826.2008.01793.x

    Article  CAS  PubMed  Google Scholar 

  36. Shiraki A, Saito F, Akane H, Akahori Y, Imatanaka N, Itahashi M, Yoshida T, Shibutani M (2016) Gene expression profiling of the hippocampal dentate gyrus in an adult toxicity study captures a variety of neurodevelopmental dysfunctions in rat models of hypothyroidism. J Appl Toxicol 36(1):24–34. https://doi.org/10.1002/jat.3140

    Article  CAS  PubMed  Google Scholar 

  37. Mutch DM, Berger A, Mansourian R, Rytz A, Roberts M-A (2002) The limit fold change model: a practical approach for selecting differentially expressed genes from microarray data. BMC Bioinform 3(1):17. https://doi.org/10.1186/1471-2105-3-17

    Article  Google Scholar 

  38. Rahaman SO, Ghosh S, Mohanakumar K, Das S, Sarkar PK (2001) Hypothyroidism in the developing rat brain is associated with marked oxidative stress and aberrant intraneuronal accumulation of neurofilaments. Neurosc Res 40(3):273–279

    Article  CAS  Google Scholar 

  39. Cano-Europa E, Pérez-Severiano F, Vergara P, Ortiz-Butrón R, Ríos C, Segovia J, Pacheco-Rosado J (2008) Hypothyroidism induces selective oxidative stress in amygdala and hippocampus of rat. Metab Brain Dis 23(3):275–287

    Article  CAS  Google Scholar 

  40. Goswami K, Nandakumar DN, Koner BC, Bobby Z, Sen SK (2003) Oxidative changes and desialylation of serum proteins in hyperthyroidism. Clin Chimica acta 337(1–2):163–168

    Article  CAS  Google Scholar 

  41. Guerra LN, de Molina MdCR, Miler EA, Moiguer S, Karner M, Burdman JA (2005) Antioxidants and methimazole in the treatment of Graves' disease: effect on urinary malondialdehyde levels. Clin Chimica Acta 352(1–2):115–120

    Article  CAS  Google Scholar 

  42. Cetinkaya A, Kurutas EB, Buyukbese MA, Kantarceken B (2005) Bulbuloglu E (2005) Levels of malondialdehyde and superoxide dismutase in subclinical hyperthyroidism. Mediat Inflamm 1:57–59

    Article  Google Scholar 

  43. Kowalczyk E, Kopff M, Kopff A, Rudnicka M, Błaszczyk J (2003) The influence of hyperthyroidism on selected parameters of oxidant-antioxidant balance on animal model. Polskie Arch Med Wewn 110(2):837–841

    CAS  Google Scholar 

  44. Mogulkoc R, Baltaci A, Aydin L, Oztekin E, Sivrakaya A (2005) The effect of thyroxine administration on lipid peroxidation in different tissues of rats with hypothyroidism. Acta Physiol Hung 92(1):39–46

    Article  CAS  Google Scholar 

  45. Pascua Maestro R, González E, Lillo C, Ganfornina MD, Falcon-Perez JM, Sanchez D (2018) Extracellular vesicles secreted by astroglial cells transport Apolipoprotein D to neurons and mediate neuronal survival upon oxidative stress. Frontiers in cellular neuroscience 12:526

    Article  Google Scholar 

  46. Do Carmo S, Séguin D, Milne R, Rassart E (2002) Modulation of apolipoprotein D and apolipoprotein E mRNA expression by growth arrest and identification of key elements in the promoter. J Biol Chem 277(7):5514–5523

    Article  CAS  Google Scholar 

  47. Kim WS, Wong J, Weickert CS, Webster MJ, Bahn S, Garner B (2009) Apolipoprotein-D expression is increased during development and maturation of the human prefrontal cortex. J Neurochem 109(4):1053–1066. https://doi.org/10.1111/j.1471-4159.2009.06031.x

    Article  CAS  PubMed  Google Scholar 

  48. Najyb O, Do Carmo S, Alikashani A, Rassart E (2017) Apolipoprotein D overexpression protects against kainate-induced neurotoxicity in mice. Mol Neurobiol 54(6):3948–3963. https://doi.org/10.1007/s12035-016-9920-4

    Article  CAS  PubMed  Google Scholar 

  49. Desmarais F, Bergeron KF, Lacaille M, Lemieux I, Bergeron J, Biron S, Rassart E, Joanisse DR, Mauriege P, Mounier C (2018) High ApoD protein level in the round ligament fat depot of severely obese women is associated with an improved inflammatory profile. Endocrine 61(2):248–257. https://doi.org/10.1007/s12020-018-1621-5

    Article  CAS  PubMed  Google Scholar 

  50. Nam SM, Kim JW, Yoo DY, Jung HY, Chung JY, Kim DW, Hwang IK, Yoon YS (2018) Hypothyroidism increases cyclooxygenase-2 levels and pro-inflammatory response and decreases cell proliferation and neuroblast differentiation in the hippocampus. Mol Med Rep 17(4):5782–5788. https://doi.org/10.3892/mmr.2018.8605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Levros LC Jr, Labrie M, Charfi C, Rassart E (2013) Binding and repressive activities of apolipoprotein E3 and E4 isoforms on the human ApoD promoter. Mol Neurobiol 48(3):669–680. https://doi.org/10.1007/s12035-013-8456-0

    Article  CAS  PubMed  Google Scholar 

  52. Roman C, Fuior EV, Trusca VG, Kardassis D, Simionescu M, Gafencu AV (2015) Thyroid hormones upregulate apolipoprotein E gene expression in astrocytes. Biochem Biophys Res Commun 468(1–2):190–195. https://doi.org/10.1016/j.bbrc.2015.10.132

    Article  CAS  PubMed  Google Scholar 

  53. Lim W, Bae H, Song G (2016) Differential expression of apolipoprotein D in male reproductive system of rats by high-fat diet. Andrology 4(6):1115–1122. https://doi.org/10.1111/andr.12250

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research presented in this article is part of the dissertation of Marziyeh Salami, to receive a master’s degree in biochemistry. Semnan University of Medical Sciences sponsored this project under the project no. 1190.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Pakdel.

Ethics declarations

Conflict of interest

We declare that there are no conflicts of interests exist.

Ethical Approval

The ethics committee of Semnan university of medical sciences accredited the study (approval ID: IR. SEMUMS. REC.1395. 215). All experiments and animal care performed based on approved international and national guidelines.

Research Involving Human and Animal Participants

Authors have performed no studies on the human participants in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salami, M., Bandegi, A.R., Sameni, H.R. et al. Hippocampal Up-Regulation of Apolipoprotein D in a Rat Model of Maternal Hypo- and Hyperthyroidism: Implication of Oxidative Stress. Neurochem Res 44, 2190–2201 (2019). https://doi.org/10.1007/s11064-019-02859-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02859-5

Keywords

Navigation