Skip to main content
Log in

Hypothyroidism induces selective oxidative stress in amygdala and hippocampus of rat

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The effects of hypothyroidism on lipid peroxidation (LP), reactive oxygen species (ROS), and nitric oxide synthase (NOS), levels and expression, in rat brain were examined. Hypothyroidism was induced by administering methimazole in drinking water (60 mg/kg/day). In striatum, motor cortex and cerebellum of hypothyroid rats LP was not modified, whereas LP and ROS increased in amygdala and hippocampus of hypothyroid rats at the third week of treatment with methimazole as compared to euthyroid group values. Regarding NOS participation, only hippocampal constitutive-NOS activity was increased, accompanied by an augmentation in nNOS expression. Results show that hypothyroidism induces selective oxidative stress in both the hippocampus and amygdala, where the nitrergic system is involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alevizaki M, Synetou M, Xynos K, Alevizaki CC, Vemmos KN (2006) Hypothyroidism as a protective factor in acute stroke patients. Clin Endocrinol (Oxf) 65:369–372

    Article  Google Scholar 

  • Alva-Sánchez C, Ortiz-Butrón R, Cuellar-García M, Hernández-García A, Pacheco-Rosado J (2002) Anatomical changes in CA3 hippocampal region by hypothyroidism in rats. Proc West Pharmacol Soc 45:125–126

    PubMed  Google Scholar 

  • Alva-Sánchez C, Ortiz-Butrón R, Pacheco-Rosado J (2004) Kainic acid does no affect CA3 hippocampal region pyramidal cells in hypothyroid rats. Brain Res Bull 63:167–171

    Article  PubMed  Google Scholar 

  • Amato A, Barbour B, Szatkowski M, Attwell D (1994) Counter-transport of potassium by glutamate uptake carrier in glial cell isolated from the tiger salamander retina. J Physiol (Lond) 479:371–390

    CAS  Google Scholar 

  • Ambrogini P, Cuppini R, Ferri P, Manzini C, Ciaroni S, Voci A, Gerdoni E, Gallo G (2005) Thyroid hormona affect neurogenesis in the dentate gyrus of adult rat. Neuroendocrinol 81:244–253

    Article  CAS  Google Scholar 

  • Aniello F, Couchie A, Bidox A, Gripois D, Nunez J (1991) Splicing of juvenile and adult tau mRNA variants is regulated by thyroid hormone. Proc Natl Acad Sci U S A 88:4035–4039

    Article  PubMed  CAS  Google Scholar 

  • Arrica M, Bissonnette B (2007) Therapeutic hypothermia. Semen Cardiothorac Vasc Anesth 11:6–15

    Article  Google Scholar 

  • Boelaert K, Franklyn JA (2005) Thyroid hormone in health and disease. J Endocrinol 187:1–15

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of micrograms quantities of protein utilizing the principle of protein-dye binding. Annal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase. A cadmodulin-requiring enzyme. Proc Natl Acad Sci U S A 87:682–685

    Article  PubMed  CAS  Google Scholar 

  • Brown LA, Key BJ, Lovick TA (1999) Bio-imaging of nitric oxide-producing neurones in slices of rat brain using 4,5-diaminofluorescein. J Neurosci Methods 92:101–110

    Article  PubMed  CAS  Google Scholar 

  • Carageorgiou H, Pantos C, Zarros A, Stolakis V, Mourouzis I, Cokkinos D, Tsakiris S (2007) Changes in acetylcholinesterase, Na+, K+-ATPase, and Mg2+-ATPase activities in the frontal cortex and the hippocampus of hyper- and hypothyroid adult rats. Metab Clin Exp 56:1104–1110

    PubMed  CAS  Google Scholar 

  • Carreras MC, Peralta JG, Converso DP, Finocchietto PV, Rebagliati I, Zaninovich AA, Poderoso JJ (2001) Modulation of liver mitochondrial NOS is implicated in thyroid-dependent regulation of O2 uptake. Am J Physiol Heart Circ Physiol 281:H2282–H2288

    PubMed  CAS  Google Scholar 

  • Constantinou C, Margarity M, Valcana T (2005) Region-specific effects of hypothyroidism on the relative expression of thyroid hormone receptors in adult rat brain. Mol Cell Biochem 278:93–100

    Article  PubMed  CAS  Google Scholar 

  • Cooper DS (2001) Clinical practice. Subclinical hypothyroidism. N Engl J Med 345:260–265

    Article  PubMed  CAS  Google Scholar 

  • Das K, Chainy GBN (2001) Modulation of rat liver mitochondrial antioxidant defence system by thyroid hormone. Biochim Biophys Acta 1537:1–13

    PubMed  CAS  Google Scholar 

  • Davis FB, Cody V, Davis PJ, Borzynski LJ, Blas SD (1983) Stimulation by thyroid hormone analogues of red blood cell Ca2+-ATPase activity in vitro. Correlations between hormone structure and biological activity in a human cell system. J Biol Chem 258:12373–12377

    PubMed  CAS  Google Scholar 

  • Desouza LA, Ladiwala U, Daniel SM, Agashe S, Vahadilla RA, Vahadilla VA (2005) Thyroid hormone regulates hippocampal neurogenesis in the adult rat brain. Mol Cel Neurosci 29:414–426

    Article  CAS  Google Scholar 

  • Doyle KP, Suchland KL, Ciesielski TM, Lessov NS, Grandy DK, Scanlan TS, Stenzel-Poore MP (2007) Novel thyroxine derivatives, thyronamine and 3-iodothyronamine, induce transient hypothermia and marked neuroprotection against stroke injury. Stroke 38:2569–2576

    Article  PubMed  CAS  Google Scholar 

  • Evans PH (1993) Free radicals in brain metabolism and pathology. Br Med Bull 49:577–587

    PubMed  CAS  Google Scholar 

  • García-Tovar CG, Pérez A, Luna J, Mena R, Osorio B, Alemán V, Mondragón R, Mornet D, Rendón A, Hernández JM (2001) Biochemical and histochemical analysis of 71 kDa dystrophin isoform (Dp71f) in rat brain. Acta Histochem 103:209–224

    Article  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radical in biology and medicine. Claredon, Oxford

    Google Scholar 

  • Hoch FL (1988) Lipids and thyroid hormones. Prog Lipid Res 27:199–270

    Article  PubMed  CAS  Google Scholar 

  • Hulbert AJ (2000) Thyroid hormone and their effects: a new perspective. Biol Rev 75:519–631

    Article  PubMed  CAS  Google Scholar 

  • Hulbert AJ, Else PL (1999) Membranes as possible pacemakers of metabolism. J Theoret Biol 199:257–274

    Article  CAS  Google Scholar 

  • Mano T, Sinohara R, Sawai Y, Oda N, Nishida Y, Mokumo T, Asano K, Ito Y, Kotake M, Hamada M (1995) Changes in lipid peroxidation and free radical scavengers in the brain of hyper- and hypothyroid aged rats. J Endocrinol 147:361–365

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga M, Saotame M, Satoh H, Katoh H, Terrade H, Hayashi H (2005) Different actions of cardioprotective agents on mitochondrial Ca2+ paradox-induced Ca2+ overload. Circ J 69:1132–1140

    Article  PubMed  CAS  Google Scholar 

  • Pacheco-Rosado J, Alva-Sánchez C (2007) Thyroid hormone and their possible role as neuron survival factors in the adult rat brain. In: Santamaría A, Jiménez Capdeville ME (eds) New perspectives on brain cell damage, neurodegeneration and neuroprotective strategies. Research Signpost, India, pp 75–93

    Google Scholar 

  • Pacheco-Rosado J, Quevedo-Corona L, Zamudio-Hernández SR, Chambert G (1997) T3 prolongs convulsion induced by acute pentylentetrazole. Horm Metab Res 29:577–579

    Article  PubMed  CAS  Google Scholar 

  • Pacheco-Rosado J, Arias-Citalán G, Ortiz-Butrón R, Rodríquez-Páez L (2005) Selective decrease of Na+/K+-ATPase activity in brain of mild hypothyroid rats. Proc West Pharmacol Soc 48:52–54

    PubMed  Google Scholar 

  • Packer MA, Stasiv Y, Benraiss A, Chmielnicki E, Grinberg A, Westphal H, Goldman SA, Enikolopou G (2003) Nitric oxide negatively regulates mammalian adult neurogenesis. Proc Natl Acad Sci U S A 100:9566–9571

    Article  PubMed  CAS  Google Scholar 

  • Pamplona R, Portero-Otin M, Ruiz C, Bellmunt MF, Requena JR, Thorpe SR, Baynes JW, Romero M, López-Torres M, Barja G (1999) Thyroid status modulates glycoxidative and lipoxidative modification of tissue proteins. Free Radic Biol Med 27:901–910

    Article  PubMed  CAS  Google Scholar 

  • Paul S, Das S, Sarkar PK (1992) Effect of hypothyroidism on different forms of actin in rat cerebral neuronal cultures studied by an improved DNAase I inhibition assay. J Neurochem 59:701–706

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Severiano F, Escalante B, Vergara P, Rios C, Segovia J (2002) Age-dependent changes in nitric oxide synthase activity and protein expression in striata of mice transgenic for the Huntington’s disease mutation. Brain Res 951:36–42

    Article  PubMed  Google Scholar 

  • Pérez-Severiano F, Santamaría A, Pedraza-Caverri J, Medina-Campos ON, Rios C, Segovia J (2004) Increased formation of reactive oxygen species, but no changes in glutathione preoxidase activity, in striata of mice transgenic for the Huntington’s disease mutation. Neurochem Res 29:729–733

    Article  PubMed  Google Scholar 

  • Psarra AM, Solakidi S, Sekeris CE (2006) The mitochondrion as a primary site of action of steroid and thyroid hormones: presence and action of steroid and thyroid hormone receptors in mitochondria of animal cells. Mol Cell Endocrinol 246:21–33

    Article  PubMed  CAS  Google Scholar 

  • Puymirat J (1992) Thyroid receptors in the rat brain. Prog Neurobiol 39:281–294

    Article  PubMed  CAS  Google Scholar 

  • Quesada A, Sainz J, Wangensteen R, Rodríguez-Gomez I, Vargas F, Osuna A (2002) Nitric oxide synthase activity in hyperthyroid and hypothyroid rats. Eur J Endocrinol 147:117–122

    Article  PubMed  CAS  Google Scholar 

  • Rahaman SO, Ghosh S, Mohanakumar KP, Das S, Sarkar PK (2001) Hypothyroidism in the developing rat brain is associated with marked oxidative stress and aberrant intraneuronal accumulation of neurofilaments. Neurosci Res 40:273–279

    Article  PubMed  CAS  Google Scholar 

  • Rami A, Krieglstein J (1992) Thyroxine attenuates hippocampal neuronal damage caused by ischemia in the rat. Life Sci 50:645–650

    Article  PubMed  CAS  Google Scholar 

  • Rivas M, Naranjo JR (2007) Thyroid hormones, learning and memory. Genes Brain Behav 6:40–44

    Article  PubMed  CAS  Google Scholar 

  • Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in sever brain ischaemia is mainly by reversed uptake. Nature 403:316–321

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Marcos A, Sánchez-Toscano F, Obregón MJ, Escobar del Rey F, Morreale de Escobar G (1982) Thyroxine treatment and recovery of hypothyroidism induced pyramidal cell damage. Brain Res 239:559–574

    Article  PubMed  CAS  Google Scholar 

  • Sarkar PK (2002) In quest of thyroid hormone function in mature mammalian brain. Ind J Exp Biol 40:865–873

    CAS  Google Scholar 

  • Scmitt KR, Diestel A, Lehnardt S, Schwartlander R, Lange PE, Berger F, Ullrich O, Abdul-Khaliq H (2007) Hypothermia suppress inflammation via ERK signaling pathway in stimulated microglial cells. J Neuroimmunol 189:7–16

    Article  Google Scholar 

  • Segovia J, Vergara P, Brenner M (1998) Differentiation-dependent expression of transgenes in engineered astrocyte cell lines. Neurosci Lett 242:172–176

    Article  PubMed  CAS  Google Scholar 

  • Shuaib A, Ijaz S, Hemmings S, Galazka P, Ishaqzay R, Liu L, Ravindran J, Miyashita H (1994) Decreased glutamate release during hypothyroidism may contribute to protection in cerebral ischemia. Exp Neurol 128:260–265

    Article  PubMed  CAS  Google Scholar 

  • Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106

    Article  PubMed  CAS  Google Scholar 

  • Simonides WS, Brent GA, Thelen MHM, van der Linden CG, Larsen PR, van Hardeveld C (1996) Characterization of the promoter of the rat sarcoplasmic endoplasmic reticulum Ca2+-ATPase 1 gene and analysis of thyroid hormone responsiveness. J Biol Chem 271:32048–32056

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Upadhyay G, Kumar S, Kapoor A, Kumar A, Tiwari M, Godbole MM (2003) Hypothyroidism alters the expression of Bcl-2 family genes to induce enhanced apoptosis I the developing cerebellum. J Edocrinol 176:39–46

    Article  CAS  Google Scholar 

  • Venditti P, Balestrieri M, Di Meo S, De Leo T (1997) Effect of thyroid state on lipid peroxidation, antioxidant defences and susceptibility to oxidative stress in rat tissues. J Endocrinol 155:151–157

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by SIP-IPN 20070734, CONACyT 52253 (J.P.-R.), CONACyT 53220-M (F.P.-S.) and CONACyT 54756 (J.S.). R.O.-B. and J.P.-R. are fellows of EDI-IPN and DEDICT-COFAA-IPN. E.C.-E. is fellow of CONACYT. We thank Dr. M Hernández (Cinvestav) for the kind gift of the β-actin antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Pacheco-Rosado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cano-Europa, E., Pérez-Severiano, F., Vergara, P. et al. Hypothyroidism induces selective oxidative stress in amygdala and hippocampus of rat. Metab Brain Dis 23, 275–287 (2008). https://doi.org/10.1007/s11011-008-9099-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-008-9099-0

Keywords

Navigation