Skip to main content

Advertisement

Log in

Characterization of Functional Primary Cilia in Human Induced Pluripotent Stem Cell-Derived Neurons

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Recent advances in human induced pluripotent stem cells (hiPSCs) offer new possibilities for biomedical research and clinical applications. Neurons differentiated from hiPSCs may be promising tools to develop novel treatment methods for various neurological diseases. However, the detailed process underlying functional maturation of hiPSC-derived neurons remains poorly understood. Here, we analyze the developmental architecture of hiPSC-derived cortical neurons, iCell GlutaNeurons, focusing on the primary cilium, a single sensory organelle that protrudes from the surface of most growth-arrested vertebrate cells. To characterize the neuronal cilia, cells were cultured for various periods and evaluated immunohistochemically by co-staining with antibodies against ciliary markers Arl13b and MAP2. Primary cilia were detected in neurons within days, and their prevalence and length increased with increasing days in culture. Treatment with the mood stabilizer lithium led to primary cilia length elongation, while treatment with the orexigenic neuropeptide melanin-concentrating hormone caused cilia length shortening in iCell GlutaNeurons. The present findings suggest that iCell GlutaNeurons develop neuronal primary cilia together with the signaling machinery for regulation of cilia length. Our approach to the primary cilium as a cellular antenna can be useful for both assessment of neuronal maturation and validation of pharmaceutical agents in hiPSC-derived neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  Google Scholar 

  2. Wheeler HE, Wing C, Delaney SM, Komatsu M, Dolan ME (2015) Modeling chemotherapeutic neurotoxicity with human induced pluripotent stem cell-derived neuronal cells. PLoS ONE 10:e0118020. https://doi.org/10.1371/journal.pone.0118020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ohara Y, Koganezawa N, Yamazaki H, Roppongi RT, Sato K, Sekino Y, Shirao T (2015) Early-stage development of human induced pluripotent stem cell-derived neurons. J Neurosci Res 93:1804–1813. https://doi.org/10.1002/jnr.23666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nakamura H, Yamashita N, Kanamaru Y, Tachibana T, Sekino Y, Chen S, Gotoh T, Tanaka F, Goshima Y (2015) Quantitative analysis of intraneuronal transport in human iPS neurons. J Pharmacol Sci 128:170–178. https://doi.org/10.1016/j.jphs.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  5. Dage JL, Colvin EM, Fouillet A et al (2014) Pharmacological characterisation of ligand- and voltage-gated ion channels expressed in human iPSC-derived forebrain neurons. Psychopharmacology 231:1105–1124. https://doi.org/10.1007/s00213-013-3384-2

    Article  CAS  PubMed  Google Scholar 

  6. Berry BJ, Akanda N, Smith AS, Long CJ, Schnepper MT, Guo X, Hickman JJ (2015) Morphological and functional characterization of human induced pluripotent stem cell-derived neurons (iCell Neurons) in defined culture systems. Biotechnol Prog 31:1613–1622. https://doi.org/10.1002/btpr.2160

    Article  CAS  PubMed  Google Scholar 

  7. Neagoe I, Liu C, Stumpf A, Lu Y, He D, Francis R, Chen J, Reynen P, Alaoui-Ismaili MH, Fukui H (2018) The GluN2B subunit represents a major functional determinant of NMDA receptors in human induced pluripotent stem cell-derived cortical neurons. Stem Cell Res 28:105–114. https://doi.org/10.1016/j.scr.2018.02.002

    Article  PubMed  Google Scholar 

  8. Louvi A, Grove EA (2011) Cilia in the CNS: the quiet organelle claims center stage. Neuron 69:1046–1060. https://doi.org/10.1016/j.neuron.2011.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ishikawa H, Marshall WF (2011) Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol 12:222–234. https://doi.org/10.1038/nrm3085

    Article  CAS  Google Scholar 

  10. Wheway G, Nazlamova L, Hancock JT (2018) Signaling through the primary cilium. Front Cell Dev Biol 6:8. https://doi.org/10.3389/fcell.2018.00008

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hildebrandt F, Benzing T, Katsanis N (2011) Ciliopathies. New Engl J Med 364:1533–1543. https://doi.org/10.1056/NEJMra1010172

    Article  CAS  PubMed  Google Scholar 

  12. Guadiana SM, Semple-Rowland S, Daroszewski D, Madorsky I, Breunig JJ, Mykytyn K, Sarkisian MR (2013) Arborization of dendrites by developing neocortical neurons is dependent on primary cilia and type 3 adenylyl cyclase. J Neurosci 33:2626–2638. https://doi.org/10.1523/JNEUROSCI.2906-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo J, Otis JM, Higginbotham H, Monckton C, Cheng J, Asokan A, Mykytyn K, Caspary T, Stuber GD, Anton ES (2017) Primary cilia signaling shapes the development of interneuronal connectivity. Dev Cell 42:286–300. https://doi.org/10.1016/j.devcel.2017.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hilgendorf KI, Johnson CT, Jackson PK (2016) The primary cilium as a cellular receiver: organizing ciliary GPCR signaling. Curr Opin Cell Biol 39:84–92. https://doi.org/10.1016/j.ceb.2016.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berbari NF, Lewis JS, Bishop GA, Askwith CC, Mykytyn K (2008) Bardet–Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc Natl Acad Sci USA 105:4242–4246. https://doi.org/10.1073/pnas.0711027105

    Article  PubMed  Google Scholar 

  16. Miyoshi K, Kasahara K, Miyazaki I, Asanuma M (2009) Lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Biochem Biophys Res Commun 388:757–762. https://doi.org/10.1016/j.bbrc.2009.08.099

    Article  CAS  PubMed  Google Scholar 

  17. Domire JS, Green JA, Lee KG, Johnson AD, Askwith CC, Mykytyn K (2011) Dopamine receptor 1 localizes to neuronal cilia in a dynamic process that requires the Bardet-Biedl syndrome proteins. Cell Mol Life Sci 68:2951–2960. https://doi.org/10.1007/s00018-010-0603-4

    Article  CAS  PubMed  Google Scholar 

  18. Kobayashi Y, Takemoto R, Yamato S, Okada T, Iijima M, Uematsu Y, Chaki S, Saito Y (2018) Depression-resistant phenotype in mice overexpressing regulator of G protein signaling 8 (RGS8). Neuroscience 383:160–169. https://doi.org/10.1016/j.neuroscience.2018.05.005

    Article  CAS  PubMed  Google Scholar 

  19. Marley A, von Zastrow M (2012) A simple cell-based assay reveals that diverse neuropsychiatric risk genes converge on primary cilia. PLoS ONE 7:e46647. https://doi.org/10.1371/journal.pone.0046647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu L, Wang B, Zhang Y (2017) Serotonin 5-HT6 receptors affect cognition in a mouse model of Alzheimer’s disease by regulating cilia function. Alzheimers Res Ther 9:76. https://doi.org/10.1186/s13195-017-0304-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liang Y, Meng D, Zhu B, Pan J (2016) Mechanism of ciliary disassembly. Cell Mol Life Sci 73:1787–1802. https://doi.org/10.1007/s00018-016-2148-7

    Article  CAS  PubMed  Google Scholar 

  22. Hamamoto A, Yamato S, Katoh Y, Nakayama K, Yoshimura K, Takeda S, Kobayashi Y, Saito Y (2016) Modulation of primary cilia length by melanin-concentrating hormone receptor 1. Cell Signal 28:572–584. https://doi.org/10.1016/j.cellsig.2016.02.018

    Article  CAS  PubMed  Google Scholar 

  23. Tomoshige S, Kobayashi Y, Hosoba K, Hamamoto A, Miyamoto T, Saito Y (2017) Cytoskeleton-related regulation of primary cilia shortening mediated by melanin-concentrating hormone receptor 1. Gen Comp Endocrinol 253:44–52. https://doi.org/10.1016/j.ygcen.2017.08.021

    Article  CAS  PubMed  Google Scholar 

  24. Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37:173–182. https://doi.org/10.1016/0165-0270(91)90128-M

    Article  CAS  PubMed  Google Scholar 

  25. Higginbotham H, Eom TY, Mariani LE, Bachleda A, Hirt J, Gukassyan V, Cusack CL, Lai C, Caspary T, Anton ES (2012) Arl13b in primary cilia regulates the migration and placement of interneurons in the developing cerebral cortex. Dev Cell 23:925–938. https://doi.org/10.1016/j.devcel.2012.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee JY, Stearns T (2013) FOP is a centriolar satellite protein involved in ciliogenesis. PLoS ONE 8:e58589. https://doi.org/10.1371/journal.pone.0058589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ou Y, Ruan Y, Cheng M, Moser JJ, Rattner JB, van der Hoorn FA (2009) Adenylate cyclase regulates elongation of mammalian primary cilia. Exp Cell Res 315:2802–2817. https://doi.org/10.1016/j.yexcr.2009.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Muñoz-Estrada J, Lora-Castellanos A, Meza I, Alarcón Elizalde S, Benítez-King G (2018) Primary cilia formation is diminished in schizophrenia and bipolar disorder: a possible marker for these psychiatric diseases. Schizophr Res 195:412–420. https://doi.org/10.1016/j.schres.2017.08.055

    Article  PubMed  Google Scholar 

  29. May-Simera HL, Wan Q, Jha BS et al (2018) Primary cilium-mediated retinal pigment epithelium maturation is disrupted in ciliopathy patient cells. Cell Rep 22:189–205. https://doi.org/10.1016/j.celrep.2017.12.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sterpka A, Chen X (2018) Neuronal and astrocytic primary cilia in the mature brain. Pharmacol Res 137:114–121. https://doi.org/10.1016/j.phrs.2018.10.002

    Article  PubMed  Google Scholar 

  31. Arellano JI, Guadiana SM, Breunig JJ, Rakic P, Sarkisian MR (2012) Development and distribution of neuronal cilia in mouse neocortex. J Comp Neurol 520:848–873. https://doi.org/10.1002/cne.22793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chambers J, Ames RS, Bergsma D et al (1999) Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature 400:261–265. https://doi.org/10.1038/22313

    Article  CAS  PubMed  Google Scholar 

  33. Saito Y, Nothacker HP, Wang Z, Lin S, Leslie FM, Civelli O (1999) Molecular characterization of the melanin-concentrating-hormone receptor. Nature 400:265–269. https://doi.org/10.1038/22321

    Article  CAS  PubMed  Google Scholar 

  34. Macneil DJ (2013) The role of melanin-concentrating hormone and its receptors in energy homeostasis. Front Endocrinol 4:49. https://doi.org/10.3389/fendo.2013.00049

    Article  CAS  Google Scholar 

  35. Barnett S, Reilly S, Carr L, Ojo I, Beales PL, Charman T (2002) Behavioural phenotype of Bardet-Biedl syndrome. J Med Genet 39:e76. https://doi.org/10.1136/jmg.39.12.e76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was supported by research grants (AMED JP17bk0104077 to T.S.) and the Ministry of Education, Culture, Sports, Science and Technology of Japan (KAKENHI 16K07053 to N.T and 15K06775 to Y.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumiko Saito.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miki, D., Kobayashi, Y., Okada, T. et al. Characterization of Functional Primary Cilia in Human Induced Pluripotent Stem Cell-Derived Neurons. Neurochem Res 44, 1736–1744 (2019). https://doi.org/10.1007/s11064-019-02806-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02806-4

Keywords

Navigation