Skip to main content

Advertisement

Log in

Astroglial Mechanisms of Ketamine Action Include Reduced Mobility of Kir4.1-Carrying Vesicles

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The finding that ketamine, an anaesthetic, can elicit a rapid antidepressant effect at low doses that lasts for weeks in patients with depression is arguably a major achievement in psychiatry in the last decades. However, the mechanisms of action are unclear. The glutamatergic hypothesis of ketamine action posits that ketamine is a N-methyl-d-aspartate receptor (NMDAR) antagonist modulating downstream cytoplasmic events in neurons. In addition to targeting NMDARs in synaptic transmission, ketamine may modulate the function of astroglia, key homeostasis-providing cells in the central nervous system, also playing a role in many neurologic diseases including depression, which affects to 20% of the population globally. We first review studies on astroglia revealing that (sub)anaesthetic doses of ketamine attenuate stimulus-evoked calcium signalling, a process of astroglial cytoplasmic excitability, regulating the exocytotic release of gliosignalling molecules. Then we address how ketamine alters the fusion pore activity of secretory vesicles, and how ketamine affects extracellular glutamate and K+ homeostasis, both considered pivotal in depression. Finally, we also provide evidence indicating reduced cytoplasmic mobility of astroglial vesicles carrying the inward rectifying potassium channel (Kir4.1), which may regulate the density of Kir4.1 at the plasma membrane. These results indicate that the astroglial capacity to control extracellular K+ concentration may be altered by ketamine and thus indirectly affect the action potential firing of neurons, as is the case in lateral habenula in a rat disease model of depression. Hence, ketamine-altered functions of astroglia extend beyond neuronal NMDAR antagonism and provide a basis for its antidepressant action through glia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98(1):239–389. https://doi.org/10.1152/physrev.00042.2016

    Article  CAS  PubMed  Google Scholar 

  2. Ben Haim L, Rowitch DH (2017) Functional diversity of astrocytes in neural circuit regulation. Nat Rev Neurosci 18(1):31–41. https://doi.org/10.1038/nrn.2016.159

    Article  CAS  PubMed  Google Scholar 

  3. Herculano-Houzel S (2014) The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia 62(9):1377–1391. https://doi.org/10.1002/glia.22683

    Article  PubMed  Google Scholar 

  4. Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18(7):942–952. https://doi.org/10.1038/nn.4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oberheim NA, Goldman SA, Nedergaard M (2012) Heterogeneity of astrocytic form and function. Methods Mol Biol 814:23–45. https://doi.org/10.1007/978-1-61779-452-0_3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stevens B, Muthukumar AK (2016) Cellular neuroscience. Differences among astrocytes. Science 351(6275):813. https://doi.org/10.1126/science.aaf2849

    Article  CAS  PubMed  Google Scholar 

  7. Kettenmann H, Verkhratsky A (2011) Neuroglia—living nerve glue. Fortschr Neurol Psychiatr 79(10):588–597. https://doi.org/10.1055/s-0031-1281704

    Article  CAS  PubMed  Google Scholar 

  8. Griemsmann S, Hoft SP, Bedner P, Zhang J, von Staden E, Beinhauer A, Degen J, Dublin P, Cope DW, Richter N, Crunelli V, Jabs R, Willecke K, Theis M, Seifert G, Kettenmann H, Steinhauser C (2015) Characterization of panglial gap junction networks in the thalamus, neocortex, and hippocampus reveals a unique population of glial cells. Cereb Cortex 25(10):3420–3433. https://doi.org/10.1093/cercor/bhu157

    Article  PubMed  Google Scholar 

  9. Heller JP, Rusakov DA (2015) Morphological plasticity of astroglia: understanding synaptic microenvironment. Glia 63(12):2133–2151. https://doi.org/10.1002/glia.22821

    Article  PubMed  PubMed Central  Google Scholar 

  10. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22(5):208–215

    Article  CAS  PubMed  Google Scholar 

  11. Quesseveur G, Gardier AM, Guiard BP (2013) The monoaminergic tripartite synapse: a putative target for currently available antidepressant drugs. Curr Drug Targets 14(11):1277–1294. https://doi.org/10.2174/13894501113149990209

    Article  CAS  PubMed  Google Scholar 

  12. Petrelli F, Bezzi P (2016) Novel insights into gliotransmitters. Curr Opin Pharmacol 26:138–145. https://doi.org/10.1016/j.coph.2015.11.010

    Article  CAS  PubMed  Google Scholar 

  13. Verkhratsky A, Matteoli M, Parpura V, Mothet JP, Zorec R (2016) Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. EMBO J 35(3):239–257. https://doi.org/10.15252/embj.201592705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vardjan N, Zorec R (2015) Excitable astrocytes: Ca(2+)- and cAMP-regulated exocytosis. Neurochem Res 40(12):2414–2414. https://doi.org/10.1007/s11064-015-1545-x

    Article  CAS  PubMed  Google Scholar 

  15. Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322(5907):1551–1555. https://doi.org/10.1126/science.1164022

    Article  CAS  PubMed  Google Scholar 

  16. Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11(2):87–99. https://doi.org/10.1038/nrn2757

    Article  CAS  PubMed  Google Scholar 

  17. Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22(1):183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Colombo JA, Napp MI, Yanez A, Reisin H (2001) Tissue printing of astroglial interlaminar processes from human and non-human primate cerebral cortex. Brain Res Bull 55(4):561–565. https://doi.org/10.1016/S0361-9230(01)00514-7

    Article  CAS  PubMed  Google Scholar 

  19. Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29(10):547–553. https://doi.org/10.1016/j.tins.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  20. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58(9):1094–1103. https://doi.org/10.1002/glia.20990

    Article  PubMed  Google Scholar 

  21. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7(1):41–53. https://doi.org/10.1038/nrn1824

    Article  CAS  PubMed  Google Scholar 

  22. Kreft M, Stenovec M, Rupnik M, Grilc S, Krzan M, Potokar M, Pangrsic T, Haydon PG, Zorec R (2004) Properties of Ca(2+)-dependent exocytosis in cultured astrocytes. Glia 46(4):437–445. https://doi.org/10.1002/glia.20018

    Article  PubMed  Google Scholar 

  23. Vardjan N, Parpura V, Zorec R (2016) Loose excitation-secretion coupling in astrocytes. Glia 64(5):655–667. https://doi.org/10.1002/glia.22920

    Article  PubMed  Google Scholar 

  24. Vardjan N, Verkhratsky A, Zorec R (2015) Pathologic potential of astrocytic vesicle traffic: new targets to treat neurologic diseases? Cell Transplant 24(4):599–612. https://doi.org/10.3727/096368915X687750

    Article  PubMed  Google Scholar 

  25. Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20(5):588–594. https://doi.org/10.1016/j.conb.2010.06.005

    Article  CAS  PubMed  Google Scholar 

  26. Shao W, Zhang SZ, Tang M, Zhang XH, Zhou Z, Yin YQ, Zhou QB, Huang YY, Liu YJ, Wawrousek E, Chen T, Li SB, Xu M, Zhou JN, Hu G, Zhou JW (2013) Suppression of neuroinflammation by astrocytic dopamine D2 receptors via alphaB-crystallin. Nature 494(7435):90–94. https://doi.org/10.1038/nature11748

    Article  CAS  PubMed  Google Scholar 

  27. Rial D, Lemos C, Pinheiro H, Duarte JM, Goncalves FQ, Real JI, Prediger RD, Goncalves N, Gomes CA, Canas PM, Agostinho P, Cunha RA (2015) Depression as a glial-based synaptic dysfunction. Front Cell Neurosci 9:521. https://doi.org/10.3389/fncel.2015.00521

    Article  CAS  PubMed  Google Scholar 

  28. Farmer WT, Abrahamsson T, Chierzi S, Lui C, Zaelzer C, Jones EV, Bally BP, Chen GG, Theroux JF, Peng J, Bourque CW, Charron F, Ernst C, Sjostrom PJ, Murai KK (2016) Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling. Science 351(6275):849–854. https://doi.org/10.1126/science.aab3103

    Article  CAS  PubMed  Google Scholar 

  29. Hochstim C, Deneen B, Lukaszewicz A, Zhou Q, Anderson DJ (2008) Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code. Cell 133(3):510–522. https://doi.org/10.1016/j.cell.2008.02.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsai HH, Li H, Fuentealba LC, Molofsky AV, Taveira-Marques R, Zhuang H, Tenney A, Murnen AT, Fancy SP, Merkle F, Kessaris N, Alvarez-Buylla A, Richardson WD, Rowitch DH (2012) Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337(6092):358–362. https://doi.org/10.1126/science.1222381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Domino EF, Chodoff P, Corssen G (1965) Pharmacologic effects of Ci-581, a new dissociative anesthetic, in man. Clin Pharmacol Ther 6:279–291

    Article  CAS  PubMed  Google Scholar 

  32. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47(4):351–354

    Article  CAS  PubMed  Google Scholar 

  33. Newport DJ, Carpenter LL, McDonald WM, Potash JB, Tohen M, Nemeroff CB, APA Council of Research Task Force on Novel Biomarkers and Treatments (2015) Ketamine and other NMDA antagonists: early clinical trials and possible mechanisms in depression. Am J Psychiatry 172(10):950–966. https://doi.org/10.1176/appi.ajp.2015.15040465

    Article  PubMed  Google Scholar 

  34. Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63(8):856–864. https://doi.org/10.1001/archpsyc.63.8.856

    Article  CAS  PubMed  Google Scholar 

  35. Zarate CA Jr, Brutsche NE, Ibrahim L, Franco-Chaves J, Diazgranados N, Cravchik A, Selter J, Marquardt CA, Liberty V, Luckenbaugh DA (2012) Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry 71(11):939–946. https://doi.org/10.1016/j.biopsych.2011.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Akiskal HS (2002) The bipolar spectrum—the shaping of a new paradigm in psychiatry. Curr Psychiatry Rep 4(1):1–3

    Article  PubMed  Google Scholar 

  37. Liu B, Liu J, Wang M, Zhang Y, Li L (2017) From serotonin to neuroplasticity: evolvement of theories for major depressive disorder. Front Cell Neurosci 11:305. https://doi.org/10.3389/fncel.2017.00305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boku S, Nakagawa S, Toda H, Hishimoto A (2018) Neural basis of major depressive disorder: beyond monoamine hypothesis. Psychiatry Clin Neurosci 72(1):3–12. https://doi.org/10.1111/pcn.12604

    Article  CAS  PubMed  Google Scholar 

  39. Domino EF (2010) Taming the ketamine tiger. 1965. Anesthesiology 113(3):678–684. https://doi.org/10.1097/ALN.0b013e3181ed09a2

    Article  PubMed  Google Scholar 

  40. Yang C, Shirayama Y, Zhang JC, Ren Q, Yao W, Ma M, Dong C, Hashimoto K (2015) R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry 5:e632. https://doi.org/10.1038/tp.2015.136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Abdallah CG, Sanacora G, Duman RS, Krystal JH (2015) Ketamine and rapid-acting antidepressants: a window into a new neurobiology for mood disorder therapeutics. Annu Rev Med 66:509–523. https://doi.org/10.1146/annurev-med-053013-062946

    Article  CAS  PubMed  Google Scholar 

  42. Sanacora G, Treccani G, Popoli M (2012) Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 62(1):63–77. https://doi.org/10.1016/j.neuropharm.2011.07.036

    Article  CAS  PubMed  Google Scholar 

  43. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475(7354):91–95. https://doi.org/10.1038/nature10130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329(5994):959–964. https://doi.org/10.1126/science.1190287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kavalali ET, Monteggia LM (2014) How does ketamine elicit a rapid antidepressant response? Curr Opin Pharmacol 20:35–39. https://doi.org/10.1016/j.coph.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  46. Mion G, Villevieille T (2013) Ketamine pharmacology: an update (pharmacodynamics and molecular aspects, recent findings). CNS Neurosci Ther 19(6):370–380. https://doi.org/10.1111/cns.12099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63(4):349–352. https://doi.org/10.1016/j.biopsych.2007.05.028

    Article  CAS  PubMed  Google Scholar 

  48. Ardalan M, Rafati AH, Nyengaard JR, Wegener G (2017) Rapid antidepressant effect of ketamine correlates with astroglial plasticity in the hippocampus. Br J Pharmacol 174(6):483–492. https://doi.org/10.1111/bph.13714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, Alkondon M, Yuan P, Pribut HJ, Singh NS, Dossou KS, Fang Y, Huang XP, Mayo CL, Wainer IW, Albuquerque EX, Thompson SM, Thomas CJ, Zarate CA Jr, Gould TD (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533(7604):481–486. https://doi.org/10.1038/nature17998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mitterauer BJ (2012) Ketamine may block NMDA receptors in astrocytes causing a rapid antidepressant effect. Front Synaptic Neurosci 4:8. https://doi.org/10.3389/fnsyn.2012.00008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stenovec M, Lasic E, Bozic M, Bobnar ST, Stout RF Jr, Grubisic V, Parpura V, Zorec R (2016) Ketamine inhibits ATP-evoked exocytotic release of brain-derived neurotrophic factor from vesicles in cultured rat astrocytes. Mol Neurobiol 53(10):6882–6896. https://doi.org/10.1007/s12035-015-9562-y

    Article  CAS  PubMed  Google Scholar 

  52. Wray NH, Schappi JM, Singh H, Senese NB, Rasenick MM (2018) NMDAR-independent, cAMP-dependent antidepressant actions of ketamine. Mol Psychiatry. https://doi.org/10.1038/s41380-018-0083-8

    Article  PubMed  PubMed Central  Google Scholar 

  53. Thrane AS, Rangroo Thrane V, Zeppenfeld D, Lou N, Xu Q, Nagelhus EA, Nedergaard M (2012) General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex. Proc Natl Acad Sci USA 109(46):18974–18979. https://doi.org/10.1073/pnas.1209448109

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lasic E, Rituper B, Jorgacevski J, Kreft M, Stenovec M, Zorec R (2016) Subanesthetic doses of ketamine stabilize the fusion pore in a narrow flickering state in astrocytes. J Neurochem 138(6):909–917. https://doi.org/10.1111/jnc.13715

    Article  CAS  PubMed  Google Scholar 

  55. Chowdhury GM, Behar KL, Cho W, Thomas MA, Rothman DL, Sanacora G (2012) (1)H-[(1)(3)C]-nuclear magnetic resonance spectroscopy measures of ketamine’s effect on amino acid neurotransmitter metabolism. Biol Psychiatry 71(11):1022–1025. https://doi.org/10.1016/j.biopsych.2011.11.006

    Article  CAS  PubMed  Google Scholar 

  56. Chowdhury GM, Zhang J, Thomas M, Banasr M, Ma X, Pittman B, Bristow L, Schaeffer E, Duman RS, Rothman DL, Behar KL, Sanacora G (2016) Transiently increased glutamate cycling in rat PFC is associated with rapid onset of antidepressant-like effects. Mol Psychiatry 22(1):120–126. https://doi.org/10.1038/mp.2016.34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Milak MS, Proper CJ, Mulhern ST, Parter AL, Kegeles LS, Ogden RT, Mao X, Rodriguez CI, Oquendo MA, Suckow RF, Cooper TB, Keilp JG, Shungu DC, Mann JJ (2016) A pilot in vivo proton magnetic resonance spectroscopy study of amino acid neurotransmitter response to ketamine treatment of major depressive disorder. Mol Psychiatry 21(3):320–327. https://doi.org/10.1038/mp.2015.83

    Article  CAS  PubMed  Google Scholar 

  58. Liu WX, Wang J, Xie ZM, Xu N, Zhang GF, Jia M, Zhou ZQ, Hashimoto K, Yang JJ (2016) Regulation of glutamate transporter 1 via BDNF-TrkB signaling plays a role in the anti-apoptotic and antidepressant effects of ketamine in chronic unpredictable stress model of depression. Psychopharmacology 233(3):405–415. https://doi.org/10.1007/s00213-015-4128-2

    Article  CAS  PubMed  Google Scholar 

  59. Gasull-Camos J, Tarres-Gatius M, Artigas F, Castane A (2017) Glial GLT-1 blockade in infralimbic cortex as a new strategy to evoke rapid antidepressant-like effects in rats. Transl Psychiatry 7(2):e1038. https://doi.org/10.1038/tp.2017.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56. https://doi.org/10.1038/nrn2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Haroon E, Fleischer CC, Felger JC, Chen X, Woolwine BJ, Patel T, Hu XP, Miller AH (2016) Conceptual convergence: increased inflammation is associated with increased basal ganglia glutamate in patients with major depression. Mol Psychiatry 21(10):1351–1357. https://doi.org/10.1038/mp.2015.206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Haroon E, Raison CL, Miller AH (2012) Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 37(1):137–162. https://doi.org/10.1038/npp.2011.205

    Article  CAS  PubMed  Google Scholar 

  63. Sanacora G, Banasr M (2013) From pathophysiology to novel antidepressant drugs: glial contributions to the pathology and treatment of mood disorders. Biol Psychiatry 73(12):1172–1179. https://doi.org/10.1016/j.biopsych.2013.03.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Felger JC, Lotrich FE (2013) Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience 246:199–229. https://doi.org/10.1016/j.neuroscience.2013.04.060

    Article  CAS  PubMed  Google Scholar 

  65. Medina-Rodriguez EM, Lowell JA, Worthen RJ, Syed SA, Beurel E (2018) Involvement of innate and adaptive immune systems alterations in the pathophysiology and treatment of depression. Front Neurosci 12:547. https://doi.org/10.3389/fnins.2018.00547

    Article  PubMed  PubMed Central  Google Scholar 

  66. Miller AH, Raison CL (2016) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16(1):22–34. https://doi.org/10.1038/nri.2015.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Haroon E, Miller AH, Sanacora G (2017) Inflammation, glutamate, and glia: a trio of trouble in mood disorders. Neuropsychopharmacology 42(1):193–215. https://doi.org/10.1038/npp.2016.199

    Article  CAS  PubMed  Google Scholar 

  68. Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65(9):732–741. https://doi.org/10.1016/j.biopsych.2008.11.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kohler CA, Freitas TH, Maes M, de Andrade NQ, Liu CS, Fernandes BS, Stubbs B, Solmi M, Veronese N, Herrmann N, Raison CL, Miller BJ, Lanctot KL, Carvalho AF (2017) Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand 135(5):373–387. https://doi.org/10.1111/acps.12698

    Article  CAS  PubMed  Google Scholar 

  70. Sublette ME, Postolache TT (2012) Neuroinflammation and depression: the role of indoleamine 2,3-dioxygenase (IDO) as a molecular pathway. Psychosom Med 74(7):668–672. https://doi.org/10.1097/PSY.0b013e318268de9f

    Article  PubMed  Google Scholar 

  71. Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R (2011) The new ‘5-HT’ hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 35(3):702–721. https://doi.org/10.1016/j.pnpbp.2010.12.017

    Article  CAS  PubMed  Google Scholar 

  72. Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G, Spivey JR, Saito K, Miller AH (2010) CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry 15(4):393–403. https://doi.org/10.1038/mp.2009.116

    Article  CAS  PubMed  Google Scholar 

  73. Tavares RG, Tasca CI, Santos CE, Alves LB, Porciuncula LO, Emanuelli T, Souza DO (2002) Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem Int 40(7):621–627

    Article  CAS  PubMed  Google Scholar 

  74. Tilleux S, Hermans E (2007) Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 85(10):2059–2070. https://doi.org/10.1002/jnr.21325

    Article  CAS  PubMed  Google Scholar 

  75. Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5(5):405–414. https://doi.org/10.1038/nn835

    Article  CAS  PubMed  Google Scholar 

  76. Goshen I, Kreisel T, Ben-Menachem-Zidon O, Licht T, Weidenfeld J, Ben-Hur T, Yirmiya R (2008) Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry 13(7):717–728. https://doi.org/10.1038/sj.mp.4002055

    Article  CAS  PubMed  Google Scholar 

  77. Koo JW, Russo SJ, Ferguson D, Nestler EJ, Duman RS (2010) Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc Natl Acad Sci USA 107(6):2669–2674. https://doi.org/10.1073/pnas.0910658107

    Article  PubMed  PubMed Central  Google Scholar 

  78. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59(12):1116–1127. https://doi.org/10.1016/j.biopsych.2006.02.013

    Article  CAS  PubMed  Google Scholar 

  79. Hodes GE, Pfau ML, Leboeuf M, Golden SA, Christoffel DJ, Bregman D, Rebusi N, Heshmati M, Aleyasin H, Warren BL, Lebonte B, Horn S, Lapidus KA, Stelzhammer V, Wong EH, Bahn S, Krishnan V, Bolanos-Guzman CA, Murrough JW, Merad M, Russo SJ (2014) Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc Natl Acad Sci USA 111(45):16136–16141. https://doi.org/10.1073/pnas.1415191111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. do Vale EM, Xavier CC, Nogueira BG, Campos BC, de Aquino PE, da Costa RO, Leal LK, de Vasconcelos SM, Neves KR, de Barros Viana GS (2016) Antinociceptive and anti-inflammatory effects of ketamine and the relationship to its antidepressant action and GSK3 inhibition. Basic Clin Pharmacol Toxicol 119(6):562–573. https://doi.org/10.1111/bcpt.12637

    Article  CAS  PubMed  Google Scholar 

  81. Wang N, Yu HY, Shen XF, Gao ZQ, Yang C, Yang JJ, Zhang GF (2015) The rapid antidepressant effect of ketamine in rats is associated with down-regulation of pro-inflammatory cytokines in the hippocampus. Ups J Med Sci 120(4):241–248. https://doi.org/10.3109/03009734.2015.1060281

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tan S, Wang Y, Chen K, Long Z, Zou J (2017) Ketamine alleviates depressive-like behaviors via down-regulating inflammatory cytokines induced by chronic restraint stress in mice. Biol Pharm Bull 40(8):1260–1267. https://doi.org/10.1248/bpb.b17-00131

    Article  CAS  PubMed  Google Scholar 

  83. Chen MH, Li CT, Lin WC, Hong CJ, Tu PC, Bai YM, Cheng CM, Su TP (2018) Rapid inflammation modulation and antidepressant efficacy of a low-dose ketamine infusion in treatment-resistant depression: a randomized, double-blind control study. Psychiatry Res 269:207–211. https://doi.org/10.1016/j.psychres.2018.08.078

    Article  CAS  PubMed  Google Scholar 

  84. Williams NR, Heifets BD, Blasey C, Sudheimer K, Pannu J, Pankow H, Hawkins J, Birnbaum J, Lyons DM, Rodriguez CI, Schatzberg AF (2018) Attenuation of antidepressant effects of ketamine by opioid receptor antagonism. Am J Psychiatry 175(12):1205–1215. https://doi.org/10.1176/appi.ajp.2018.18020138

    Article  PubMed  PubMed Central  Google Scholar 

  85. Peterson PK, Molitor TW, Chao CC (1998) The opioid-cytokine connection. J Neuroimmunol 83(1–2):63–69

    Article  CAS  PubMed  Google Scholar 

  86. Calvo CF, Cesselin F, Gelman M, Glowinski J (2000) Identification of an opioid peptide secreted by rat embryonic mixed brain cells as a promoter of macrophage migration. Eur J Neurosci 12(8):2676–2684

    Article  CAS  PubMed  Google Scholar 

  87. Turchan-Cholewo J, Dimayuga FO, Ding Q, Keller JN, Hauser KF, Knapp PE, Bruce-Keller AJ (2008) Cell-specific actions of HIV-Tat and morphine on opioid receptor expression in glia. J Neurosci Res 86(9):2100–2110. https://doi.org/10.1002/jnr.21653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Horvath RJ, Romero-Sandoval EA, De Leo JA (2010) Inhibition of microglial P2×4 receptors attenuates morphine tolerance, Iba1, GFAP and mu opioid receptor protein expression while enhancing perivascular microglial ED2. Pain 150(3):401–413. https://doi.org/10.1016/j.pain.2010.02.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ruzicka BB, Akil H (1997) The interleukin-1beta-mediated regulation of proenkephalin and opioid receptor messenger RNA in primary astrocyte-enriched cultures. Neuroscience 79(2):517–524

    Article  CAS  PubMed  Google Scholar 

  90. Nam MH, Han KS, Lee J, Bae JY, An H, Park S, Oh SJ, Kim E, Hwang E, Bae YC, Lee CJ (2018) Expression of micro-opioid receptor in CA1 hippocampal astrocytes. Exp Neurobiol 27(2):120–128. https://doi.org/10.5607/en.2018.27.2.120

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, Pereira EFR, Albuquerque EX, Thomas CJ, Zarate CA Jr, Gould TD (2018) Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharmacol Rev 70(3):621–660. https://doi.org/10.1124/pr.117.015198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fujita M, Richards EM, Niciu MJ, Ionescu DF, Zoghbi SS, Hong J, Telu S, Hines CS, Pike VW, Zarate CA, Innis RB (2017) cAMP signaling in brain is decreased in unmedicated depressed patients and increased by treatment with a selective serotonin reuptake inhibitor. Mol Psychiatry 22(5):754–759. https://doi.org/10.1038/mp.2016.171

    Article  CAS  PubMed  Google Scholar 

  93. Quesseveur G, David DJ, Gaillard MC, Pla P, Wu MV, Nguyen HT, Nicolas V, Auregan G, David I, Dranovsky A, Hantraye P, Hen R, Gardier AM, Déglon N, Guiard BP (2013) BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Transl Psychiatry 3:e253. https://doi.org/10.1038/tp.2013.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yu W, Zhu H, Wang Y, Li G, Wang L, Li H (2015) Reactive transformation and increased BDNF signaling by hippocampal astrocytes in response to MK-801. PLoS ONE 10(12):e0145651. https://doi.org/10.1371/journal.pone.0145651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Abdelhamid RE, Kovács KJ, Nunez MG, Larson AA (2014) Depressive behavior in the forced swim test can be induced by TRPV1 receptor activity and is dependent on NMDA receptors. Pharmacol Res 79:21–27. https://doi.org/10.1016/j.phrs.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  96. Bahnasi YM, Wright HM, Milligan CJ, Dedman AM, Zeng F, Hopkins PM, Bateson AN, Beech DJ (2008) Modulation of TRPC5 cation channels by halothane, chloroform and propofol. Br J Pharmacol 153(7):1505–1512. https://doi.org/10.1038/sj.bjp.0707689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Malarkey EB, Ni Y, Parpura V (2008) Ca2 + entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia 56(8):821–835. https://doi.org/10.1002/glia.20656

    Article  PubMed  Google Scholar 

  98. Verkhratsky A, Rodriguez JJ, Parpura V (2012) Calcium signalling in astroglia. Mol Cell Endocrinol 353(1–2):45–56. https://doi.org/10.1016/j.mce.2011.08.039

    Article  CAS  PubMed  Google Scholar 

  99. Tóth A, Boczán J, Kedei N, Lizanecz E, Bagi Z, Papp Z, Edes I, Csiba L, Blumberg PM (2005) Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Brain Res Mol Brain Res 135(1–2):162–168. https://doi.org/10.1016/j.molbrainres.2004.12.003

    Article  CAS  PubMed  Google Scholar 

  100. Mannari T, Morita S, Furube E, Tominaga M, Miyata S (2013) Astrocytic TRPV1 ion channels detect blood-borne signals in the sensory circumventricular organs of adult mouse brains. Glia 61(6):957–971. https://doi.org/10.1002/glia.22488

    Article  PubMed  Google Scholar 

  101. Zorec R, Araque A, Carmignoto G, Haydon PG, Verkhratsky A, Parpura V (2012) Astroglial excitability and gliotransmission: an appraisal of Ca2 + as a signalling route. ASN Neuro. https://doi.org/10.1042/AN20110061

    Article  PubMed  PubMed Central  Google Scholar 

  102. Tassonyi E, Charpantier E, Muller D, Dumont L, Bertrand D (2002) The role of nicotinic acetylcholine receptors in the mechanisms of anesthesia. Brain Res Bull 57(2):133–150. https://doi.org/10.1016/S0361-9230(01)00740-7

    Article  CAS  PubMed  Google Scholar 

  103. Zorec R, Verkhratsky A, Rodriguez JJ, Parpura V (2016) Astrocytic vesicles and gliotransmitters: slowness of vesicular release and synaptobrevin2-laden vesicle nanoarchitecture. Neuroscience 323:67–75. https://doi.org/10.1016/j.neuroscience.2015.02.033

    Article  CAS  PubMed  Google Scholar 

  104. Jain MK, Jahagirdar DV, Van Linde M, Roelofsen B, Eibl H (1985) Solute-induced acceleration of transbilayer movement and its implications on models of blood-brain barrier. Biochim Biophys Acta 818(3):356–364

    Article  CAS  PubMed  Google Scholar 

  105. Keiser M, Hasan M, Oswald S (2018) Affinity of ketamine to clinically relevant transporters. Mol Pharm 15(1):326–331. https://doi.org/10.1021/acs.molpharmaceut.7b00627

    Article  CAS  PubMed  Google Scholar 

  106. Lester HA, Lavis LD, Dougherty DA (2015) Ketamine inside neurons? Am J Psychiatry 172(11):1064–1066. https://doi.org/10.1176/appi.ajp.2015.14121537

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kabaso D, Calejo AI, Jorgacevski J, Kreft M, Zorec R, Iglic A (2012) Fusion pore diameter regulation by cations modulating local membrane anisotropy. Sci World J 2012:983138. https://doi.org/10.1100/2012/983138

    Article  CAS  Google Scholar 

  108. Lalo U, Pankratov Y, Kirchhoff F, North RA, Verkhratsky A (2006) NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci 26(10):2673–2683. https://doi.org/10.1523/JNEUROSCI.4689-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee MC, Ting KK, Adams S, Brew BJ, Chung R, Guillemin GJ (2010) Characterisation of the expression of NMDA receptors in human astrocytes. PLoS ONE 5(11):e14123. https://doi.org/10.1371/journal.pone.0014123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen X, Shu S, Bayliss DA (2009) HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine. J Neurosci 29(3):600–609. https://doi.org/10.1523/JNEUROSCI.3481-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shah MM (2012) HCN1 channels: a new therapeutic target for depressive disorders? Sci Signal 5(244):pe44. https://doi.org/10.1126/scisignal.2003593

    Article  CAS  PubMed  Google Scholar 

  112. Honsa P, Pivonkova H, Harantova L, Butenko O, Kriska J, Dzamba D, Rusnakova V, Valihrach L, Kubista M, Anderova M (2014) Increased expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in reactive astrocytes following ischemia. Glia 62(12):2004–2021. https://doi.org/10.1002/glia.22721

    Article  PubMed  Google Scholar 

  113. Rusnakova V, Honsa P, Dzamba D, Stahlberg A, Kubista M, Anderova M (2013) Heterogeneity of astrocytes: from development to injury—single cell gene expression. PLoS ONE 8(8):e69734. https://doi.org/10.1371/journal.pone.0069734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Calejo AI, Jorgacevski J, Rituper B, Gucek A, Pereira PM, Santos MA, Potokar M, Vardjan N, Kreft M, Goncalves PP, Zorec R (2014) Hyperpolarization-activated cyclic nucleotide-gated channels and cAMP-dependent modulation of exocytosis in cultured rat lactotrophs. J Neurosci 34(47):15638–15647. https://doi.org/10.1523/JNEUROSCI.5290-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Calejo AI, Jorgacevski J, Kucka M, Kreft M, Goncalves PP, Stojilkovic SS, Zorec R (2013) cAMP-mediated stabilization of fusion pores in cultured rat pituitary lactotrophs. J Neurosci 33(18):8068–8078. https://doi.org/10.1523/JNEUROSCI.5351-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Paco S, Margeli MA, Olkkonen VM, Imai A, Blasi J, Fischer-Colbrie R, Aguado F (2009) Regulation of exocytotic protein expression and Ca2+-dependent peptide secretion in astrocytes. J Neurochem 110(1):143–156. https://doi.org/10.1111/j.1471-4159.2009.06116.x

    Article  CAS  PubMed  Google Scholar 

  117. Shiga H, Murakami J, Nagao T, Tanaka M, Kawahara K, Matsuoka I, Ito E (2006) Glutamate release from astrocytes is stimulated via the appearance of exocytosis during cyclic AMP-induced morphologic changes. J Neurosci Res 84(2):338–347. https://doi.org/10.1002/jnr.20885

    Article  CAS  PubMed  Google Scholar 

  118. McManus MF, Chen LC, Vallejo I, Vallejo M (1999) Astroglial differentiation of cortical precursor cells triggered by activation of the cAMP-dependent signaling pathway. J Neurosci 19(20):9004–9015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ferroni S, Marchini C, Schubert P, Rapisarda C (1995) Two distinct inwardly rectifying conductances are expressed in long term dibutyryl-cyclic-AMP treated rat cultured cortical astrocytes. FEBS Lett 367(3):319–325

    Article  CAS  PubMed  Google Scholar 

  120. Bergami M, Santi S, Formaggio E, Cagnoli C, Verderio C, Blum R, Berninger B, Matteoli M, Canossa M (2008) Uptake and recycling of pro-BDNF for transmitter-induced secretion by cortical astrocytes. J Cell Biol 183(2):213–221. https://doi.org/10.1083/jcb.200806137

    Article  PubMed  PubMed Central  Google Scholar 

  121. Vignoli B, Battistini G, Melani R, Blum R, Santi S, Berardi N, Canossa M (2016) Peri-synaptic glia recycles brain-derived neurotrophic factor for LTP stabilization and memory retention. Neuron 92(4):873–887. https://doi.org/10.1016/j.neuron.2016.09.031

    Article  CAS  PubMed  Google Scholar 

  122. Akinfiresoye L, Tizabi Y (2013) Antidepressant effects of AMPA and ketamine combination: role of hippocampal BDNF, synapsin, and mTOR. Psychopharmacology 230(2):291–298. https://doi.org/10.1007/s00213-013-3153-2

    Article  CAS  PubMed  Google Scholar 

  123. Muller HK, Wegener G, Liebenberg N, Zarate CA Jr, Popoli M, Elfving B (2013) Ketamine regulates the presynaptic release machinery in the hippocampus. J Psychiatr Res 47(7):892–899. https://doi.org/10.1016/j.jpsychires.2013.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  124. Wesseling H, Rahmoune H, Tricklebank M, Guest PC, Bahn S (2014) A targeted multiplexed proteomic investigation identifies ketamine-induced changes in immune markers in rat serum and expression changes in protein kinases/phosphatases in rat brain. J Proteome Res 14(1):411–421. https://doi.org/10.1021/pr5009493

    Article  CAS  PubMed  Google Scholar 

  125. Rituper B, Gucek A, Jorgacevski J, Flasker A, Kreft M, Zorec R (2013) High-resolution membrane capacitance measurements for the study of exocytosis and endocytosis. Nat Protoc 8(6):1169–1183. https://doi.org/10.1038/nprot.2013.069

    Article  CAS  PubMed  Google Scholar 

  126. Cui Y, Yang Y, Ni Z, Dong Y, Cai G, Foncelle A, Ma S, Sang K, Tang S, Li Y, Shen Y, Berry H, Wu S, Hu H (2018) Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 554(7692):323–327. https://doi.org/10.1038/nature25752

    Article  CAS  PubMed  Google Scholar 

  127. Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, Hu H (2018) Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 554(7692):317–322. https://doi.org/10.1038/nature25509

    Article  CAS  PubMed  Google Scholar 

  128. Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355. https://doi.org/10.1146/annurev-physiol-021909-135843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, Haustein MD, Anderson MA, Mody I, Olsen ML, Sofroniew MV, Khakh BS (2014) Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci 17(5):694–703. https://doi.org/10.1038/nn.3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Behrens PF, Franz P, Woodman B, Lindenberg KS, Landwehrmeyer GB (2002) Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain 125(Pt 8):1908–1922

    Article  CAS  PubMed  Google Scholar 

  131. Kucheryavykh YV, Kucheryavykh LY, Nichols CG, Maldonado HM, Baksi K, Reichenbach A, Skatchkov SN, Eaton MJ (2007) Downregulation of Kir4.1 inward rectifying potassium channel subunits by RNAi impairs potassium transfer and glutamate uptake by cultured cortical astrocytes. Glia 55(3):274–281. https://doi.org/10.1002/glia.20455

    Article  CAS  PubMed  Google Scholar 

  132. Epping EA, Paulsen JS (2011) Depression in the early stages of Huntington disease. Neurodegener Dis Manag 1(5):407–414. https://doi.org/10.2217/nmt.11.45

    Article  PubMed  Google Scholar 

  133. Furutani K, Ohno Y, Inanobe A, Hibino H, Kurachi Y (2009) Mutational and in silico analyses for antidepressant block of astroglial inward-rectifier Kir4.1 channel. Mol Pharmacol 75(6):1287–1295. https://doi.org/10.1124/mol.108.052936

    Article  CAS  PubMed  Google Scholar 

  134. Mendez-Gonzalez MP, Kucheryavykh YV, Zayas-Santiago A, Velez-Carrasco W, Maldonado-Martinez G, Cubano LA, Nichols CG, Skatchkov SN, Eaton MJ (2016) Novel KCNJ10 gene variations compromise function of inwardly rectifying potassium channel 4.1. J Biol Chem 291(14):7716–7726. https://doi.org/10.1074/jbc.M115.679910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sala-Rabanal M, Kucheryavykh LY, Skatchkov SN, Eaton MJ, Nichols CG (2010) Molecular mechanisms of EAST/SeSAME syndrome mutations in Kir4.1 (KCNJ10). J Biol Chem 285(46):36040–36048. https://doi.org/10.1074/jbc.M110.163170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Potokar M, Kreft M, Pangrsic T, Zorec R (2005) Vesicle mobility studied in cultured astrocytes. Biochem Biophys Res Commun 329(2):678–683. https://doi.org/10.1016/j.bbrc.2005.02.030

    Article  CAS  PubMed  Google Scholar 

  137. Stenovec M, Kreft M, Grilc S, Pangrsic T, Zorec R (2008) EAAT2 density at the astrocyte plasma membrane and Ca(2+)-regulated exocytosis. Mol Membr Biol 25(3):203–215. https://doi.org/10.1080/09687680701790925

    Article  CAS  PubMed  Google Scholar 

  138. Stenovec M, Lasic E, Dominkus PP, Bobnar ST, Zorec R, Lenassi M, Kreft M (2018) Slow release of HIV-1 protein Nef from vesicle-like structures is inhibited by cytosolic calcium elevation in single human microglia. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1072-2

    Article  PubMed  Google Scholar 

  139. Potokar M, Kreft M, Li L, Daniel Andersson J, Pangrsic T, Chowdhury HH, Pekny M, Zorec R (2007) Cytoskeleton and vesicle mobility in astrocytes. Traffic 8(1):12–20. https://doi.org/10.1111/j.1600-0854.2006.00509.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Slovenian Research Agency (research core funding P3-310) and projects J3 6790, J3 6789, J3 7605 and J3 9266. We kindly thank Professors Serguei Skatchkov and Misty Eaton (Central University of the Caribbean) for sharing the plasmid Kir4.1-EGFP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Zorec.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: In honor of Prof Prof. Eva Sykova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stenovec, M., Božić, M., Pirnat, S. et al. Astroglial Mechanisms of Ketamine Action Include Reduced Mobility of Kir4.1-Carrying Vesicles. Neurochem Res 45, 109–121 (2020). https://doi.org/10.1007/s11064-019-02744-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02744-1

Keywords

Navigation