Skip to main content

Advertisement

Log in

SSeCKS promoted lipopolysaccharide-sensitized astrocytes migration via increasing β-1,4-galactosyltransferase-I activity

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocytes migration is essential in the formation of the glial scar during the injury response process of the central nervous system (CNS) especially during inflammation. Integrin β1 is part of the extracellular matrix receptors in the CNS and it has been reported that integrin β-deficient astrocytes randomly migrate into wounds. Previous studies have found that β-1,4 Galactosyltransferase-I (β-1,4-GalT-I) enhanced the β-1,4-galactosylation of integrin β1. Src-suppressed C kinase substrate (SSeCKS) is an inflammatory response protein which functionally interacts with β-1,4 Galactosyltransferase-I (β-1,4-GalT-I). In this study we aim to investigate the role of SSeCKS and β-1,4-GalT-I in the migration of astrocytes during lipopolysaccharide (LPS)-induced inflammation. Coimmunoprecipitation and immunofluorescence assays have demonstrated that SSeCKS and β-1,4-GalT-I were significantly enhanced in LPS-treated astrocytes and their interactions may occur in the Trans-Golgi Network. Lectin blot showed that the knockdown of β-1,4-GalT-I could inhibit the β-1,4-galactosylation of glycoproteins including integrin β1 with and without LPS, and that SSeCKS knockdown inhibits the β-1,4-galactosylation of glycoproteins including integrin β1 only in LPS-induced astrocytes. Additionally, wound healing assays indicated that β-1,4-GalT-I knockdown could inhibit astrocytes migration with and without LPS but SSeCKS inhibited cell migration only when LPS was present. Therefore our findings suggest that SSeCKS affects astrocytes migration by regulating the β-1,4-galactosylation of glycoproteins including integrin β1, via β-1,4-GalT-I expression in LPS-sensitized astrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kniss DA, Burry RW (1988) Serum and fibroblast growth factor stimulate quiescent astrocytes to re-enter the cell cycle. Brain Res 439(1–2):281–288. doi:0006-8993(88)91485-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  2. Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20(12):570–577. doi:S0166-2236(97)01139-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  3. Kuchler-Bopp S, Delaunoy JP, Artault JC, Zaepfel M, Dietrich JB (1999) Astrocytes induce several blood-brain barrier properties in non-neural endothelial cells. Neuroreport 10(6):1347–1353

    Article  CAS  PubMed  Google Scholar 

  4. Rakic P (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J Comp Neurol 141(3):283–312. https://doi.org/10.1002/cne.901410303

    Article  CAS  PubMed  Google Scholar 

  5. Tao-Cheng JH, Nagy Z, Brightman MW (1987) Tight junctions of brain endothelium in vitro are enhanced by astroglia. J Neurosci 7(10):3293–3299

    Article  CAS  PubMed  Google Scholar 

  6. Brakebusch C, Fassler R (2005) beta 1 integrin function in vivo: adhesion, migration and more. Cancer Metastasis Rev 24(3):403–411. https://doi.org/10.1007/s10555-005-5132-5

    Article  CAS  PubMed  Google Scholar 

  7. Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8 (5):215. https://doi.org/10.1186/gb-2007-8-5-215. doi: gb-2007-8-5-215 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vogelezang M, Forster UB, Han J, Ginsberg MH, ffrench-Constant C (2007) Neurite outgrowth on a fibronectin isoform expressed during peripheral nerve regeneration is mediated by the interaction of paxillin with alpha4beta1 integrins. BMC Neurosci 8:44. https://doi.org/10.1186/1471-2202-8-44. doi: 1471-2202-8-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morgan MR, Humphries MJ, Bass MD (2007) Synergistic control of cell adhesion by integrins and syndecans. Nat Rev Mol Cell Biol 8(12):957–969 https://doi.org/10.1038/nrm2289. doi: nrm2289 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peng H, Shah W, Holland P, Carbonetto S (2008) Integrins and dystroglycan regulate astrocyte wound healing: the integrin beta1 subunit is necessary for process extension and orienting the microtubular network. Dev Neurobiol 68(5):559–574. https://doi.org/10.1002/dneu.20593

    Article  CAS  PubMed  Google Scholar 

  11. Guo HB, Lee I, Kamar M, Akiyama SK, Pierce M (2002) Aberrant N-glycosylation of beta1 integrin causes reduced alpha5beta1 integrin clustering and stimulates cell migration. Cancer Res 62(23):6837–6845

    CAS  PubMed  Google Scholar 

  12. Kienzle C, von Blume J (2014) Secretory cargo sorting at the trans-Golgi network. Trends in Cell Biol 24(10):584–593. https://doi.org/10.1016/j.tcb.2014.04.007

    Article  CAS  Google Scholar 

  13. Weingarten S, Thiem J (2004) Formation of LacNAc mimetics employing novel donor substrates for enzymatic beta 1 → 4 galactosylation. Org Biomol Chem 2(7):961–962. https://doi.org/10.1039/b400916a

    Article  CAS  PubMed  Google Scholar 

  14. Owatworakit A, Townsend B, Louveau T, Jenner H, Rejzek M, Hughes RK, Saalbach G, Qi X, Bakht S, Roy AD, Mugford ST, Goss RJ, Field RA, Osbourn A (2013) Glycosyltransferases from oat (Avena) implicated in the acylation of avenacins. J Biol Chem 288(6):3696–3704. https://doi.org/10.1074/jbc.M112.42615. 5M112.426155 [pii]

    Article  CAS  PubMed  Google Scholar 

  15. Asano M, Furukawa K, Kido M, Matsumoto S, Umesaki Y, Kochibe N, Iwakura Y (1997) Growth retardation and early death of beta-1,4-galactosyltransferase knockout mice with augmented proliferation and abnormal differentiation of epithelial cells. EMBO J 16(8):1850–1857. https://doi.org/10.1093/emboj/16.8.1850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chui D, Oh-Eda M, Liao YF, Panneerselvam K, Lal A, Marek KW, Freeze HH, Moremen KW, Fukuda MN, Marth JD (1997) Alpha-mannosidase-II deficiency results in dyserythropoiesis and unveils an alternate pathway in oligosaccharide biosynthesis. Cell 90(1):157–167. doi:S0092-8674(00)80322-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  17. Yoshida A, Kobayashi K, Manya H, Taniguchi K, Kano H, Mizuno M, Inazu T, Mitsuhashi H, Takahashi S, Takeuchi M, Herrmann R, Straub V, Talim B, Voit T, Topaloglu H, Toda T, Endo T (2001) Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell 1(5):717–724. doi:S1534-5807(01)00070-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  18. Yan M, Xia C, Niu S, Shao X, Cheng C, Zhao J, Shen A (2007) The role of TNF-alpha and its receptors in the production of beta-1,4 galactosyltransferase I and V mRNAs by rat primary astrocytes. J Mol Neurosci 33(2):155–162. doi:JMN:33:2:155 [pii]

    Article  CAS  PubMed  Google Scholar 

  19. Lin X, Tombler E, Nelson PJ, Ross M, Gelman IH (1996) A novel src- and ras-suppressed protein kinase C substrate associated with cytoskeletal architecture. J Biol Chem 271(45):28430–28438

    Article  CAS  PubMed  Google Scholar 

  20. Gelman IH (2012) Suppression of tumor and metastasis progression through the scaffolding functions of SSeCKS/Gravin/AKAP12. Cancer Metastasis Rev 31(3–4):493–500. https://doi.org/10.1007/s10555-012-9360-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun LL, Cheng C, Liu HO, Shen CC, Xiao F, Qin J, Yang JL, Shen AG (2007) Src suppressed C kinase substrate regulates the lipopolysaccharide-induced TNF-alpha biosynthesis in rat astrocytes. J Mol Neurosci 32(1):16–24. doi:JMN:32:1:16 [pii]

    Article  CAS  PubMed  Google Scholar 

  22. Wassler MJ, Foote CI, Gelman IH, Shur BD (2001) Functional interaction between the SSeCKS scaffolding protein and the cytoplasmic domain of beta1,4-galactosyltransferase. J Cell Sci 114(Pt 12):2291–2300

    CAS  PubMed  Google Scholar 

  23. Shao B, Li C, Yang H, Shen A, Wu X, Yuan Q, Kang L, Liu Z, Zhang G, Lu X, Cheng C (2011) The relationship between Src-suppressed C kinase substrate and beta-1,4 galactosyltransferase-I in the process of lipopolysaccharide-induced TNF-alpha secretion in rat primary astrocytes. Cell Mol Neurobiol 31(7):1047–1056. https://doi.org/10.1007/s10571-011-9704-3

    Article  CAS  PubMed  Google Scholar 

  24. Stadlin A, Tsang D, MacDonall JS, Mahadik SP, Karpiak SE (1992) An in vitro study on increased neuronal and astrocytic vulnerability to neurotoxic injury after in utero cocaine exposure: the reversal effects of GM1 treatment. Prog Brain Res 94:339–350

    Article  CAS  PubMed  Google Scholar 

  25. Zou XH, Foong WC, Cao T, Bay BH, Ouyang HW, Yip GW (2004) Chondroitin sulfate in palatal wound healing. J Dent Res 83(11):880–885. doi:83/11/880 [pii]

    Article  CAS  PubMed  Google Scholar 

  26. Barry ST, Critchley DR (1994) The RhoA-dependent assembly of focal adhesions in Swiss 3T3 cells is associated with increased tyrosine phosphorylation and the recruitment of both pp125FAK and protein kinase C-delta to focal adhesions. J Cell Sci 107(Pt 7):2033–2045

    CAS  PubMed  Google Scholar 

  27. Burnworth B, Pippin J, Karna P, Akakura S, Krofft R, Zhang G, Hudkins K, Alpers CE, Smith K, Shankland SJ, Gelman IH, Nelson PJ (2012) SSeCKS sequesters cyclin D1 in glomerular parietal epithelial cells and influences proliferative injury in the glomerulus. Lab Invest 92(4):499–510. https://doi.org/10.1038/labinvest.2011.199. labinvest2011199 [pii]

    Article  CAS  PubMed  Google Scholar 

  28. Amado M, Almeida R, Schwientek T, Clausen H (1999) Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions. Biochim Biophys Acta 1473(1):35–53. doi:S0304-4165(99)00168-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  29. Appeddu PA, Shur BD (1994) Molecular analysis of cell surface beta-1,4-galactosyltransferase function during cell migration. Proc Natl Acad Sci USA 91(6):2095–2099

    Article  CAS  PubMed  Google Scholar 

  30. Adams JC, Watt FM (1993) Regulation of development and differentiation by the extracellular matrix. Development 117(4):1183–1198

    CAS  PubMed  Google Scholar 

  31. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69(1):11–25. doi:0092-8674(92)90115-S [pii]

    Article  CAS  Google Scholar 

  32. King SJ, Worth DC, Scales TM, Monypenny J, Jones GE, Parsons M (2011) beta1 integrins regulate fibroblast chemotaxis through control of N-WASP stability. EMBO J 30(9):1705–1718. https://doi.org/10.1038/emboj.2011.82. emboj201182 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Isaji T, Sato Y, Fukuda T, Gu J (2009) N-glycosylation of the I-like domain of beta1 integrin is essential for beta1 integrin expression and biological function: identification of the minimal N-glycosylation requirement for alpha5beta1. J Biol Chem 284(18):12207–12216. https://doi.org/10.1074/jbc.M807920200 M807920200 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 31600402), China Postdoctoral Science Fund (Grant No. 2017M621895), Zhejiang Province Postdoctoral Research Fund (Grant No. ZX2016000849), Ningbo Postdoctoral Research Fund (Grant No. ZX2017000053), Natural Science Foundation of Ningbo (Grant No. 2017A610216, 2016A610205), Natural Science Foundation of Zhejiang Province (Grant No. Y16H070001), Research Project of Zhejiang Provincial Department of Education (Y201738586), Agricultural Project of Public Welfare Technology Research in Zhejiang Provincial Science and Technology Department (Grant No. ZX2014C32047).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinwen Wang or Tao Tao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Xu, L., Li, C. et al. SSeCKS promoted lipopolysaccharide-sensitized astrocytes migration via increasing β-1,4-galactosyltransferase-I activity. Neurochem Res 44, 839–848 (2019). https://doi.org/10.1007/s11064-019-02716-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02716-5

Keywords

Navigation