Skip to main content
Log in

The Role of Calpain and Proteasomes in the Degradation of Carbonylated Neuronal Cytoskeletal Proteins in Acute Experimental Autoimmune Encephalomyelitis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The present study was designed to investigate the role of calpain and the proteasome in the removal of oxidized neuronal cytoskeletal proteins in myelin basic protein-induced experimental autoimmune encephalomyelitis (EAE). To this end, EAE rats received a single intrathecal injection of calpeptin or epoxomicin at the first sign of clinical disease. Forty-eight hours later, animals were sacrificed and lumbar spinal cord segments were dissected and used for biochemical analyses. The results show that calpain and proteasome activity is specifically, but partially, inhibited with calpeptin and epoxomicin, respectively. Calpain inhibition causes an increase in total protein carbonylation and in the amount of neurofilament proteins (NFPs), β-tubulin and β-actin that were spared from degradation, but no changes are seen in the oxidation of any of three NFPs. By contrast, proteasome inhibition has no effect on total protein carbonylation or cytoskeletal protein degradation but increases the amount of oxidized NFH and NFM. These results suggest that while the proteasome may contribute to removal of oxidized NFPs, calpain is the main protease involved in degradation of neuronal cytoskeleton and does not preferentially targets oxidized NFPs species in acute EAE. Different results were obtained in a cell-free system, where calpain inhibition rises the amount of oxidized NFH, and proteasome inhibition fails to change the oxidation state of the NFPs. The later finding suggests that the preferential degradation of oxidized NFH and NFM in vivo by the proteasome occurs via the 26S and not the 20S particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AMC:

7-Aminomethyl-4-coumarin

DMSO:

Dimethyl sulfoxide

DNP:

Dinitrophenyl

dpi:

Days post-immunization

EAE:

Experimental autoimmune encephalomyelitis

ECL:

Enhanced chemioluminescence

HRP:

Horseradish peroxidase

i.t.:

Intrathecal

MBP:

Myelin basic protein

MS:

Multiple sclerosis

NFH:

Neurofilament heavy (200 kDa) protein

NFL:

Neurofilament light (69 kDa) protein

NFM:

Neurofilament medium (150 kDa) protein

NFPs:

Neurofilament proteins

PAGE:

Polyacrylamide gel electrophoresis

PVDF:

Polyvinylidene difluoride

SDS:

Sodium dodecyl sulfate

References

  1. Gilgun-Sherki Y, Melamed E, Offen D (2004) The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 251:261–268

    Article  CAS  Google Scholar 

  2. LeVine SM (1992) The role of reactive oxygen species in the pathogenesis of multiple sclerosis. Med Hypotheses 39:271–274

    Article  CAS  Google Scholar 

  3. Bizzozero OA (2009) Protein carbonylation in neurodegenerative and demyelinating CNS diseases. In: Lajtha A, Banik N, Ray S (eds) Handbook of neurochemistry and molecular neurobiology. Springer, New York, pp. 543–562

    Chapter  Google Scholar 

  4. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    Article  CAS  Google Scholar 

  5. Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003) Protein carbonylation in human diseases. Trends Mol Med 9:169–176

    Article  CAS  Google Scholar 

  6. Nystrom T (2005) Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24:1311–1317

    Article  Google Scholar 

  7. Aksenov MY, Aksenova MV, Butterfield DA, Geddes JW, Markesbery WR (2001) Protein oxidation in the brain in Alzheimer’s disease. Neurosci 103:373–383

    Article  CAS  Google Scholar 

  8. Floor E, Wetzel MG (1998) Increased protein oxidation in human sustantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem 70:268–275

    Article  CAS  Google Scholar 

  9. Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, Kowall NW, Brown RH, Beal MF (1997) Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 69:2064–2074

    Article  CAS  Google Scholar 

  10. Bizzozero OA, DeJesus G, Callahan K, Pastuszyn A (2005) Elevated protein carbonylation in the brain white matter and gray matter of patients with multiple sclerosis. J Neurosci Res 81:687–695

    Article  CAS  Google Scholar 

  11. Grune T, Reinheckel T, Davies KJ (1997) Degradation of oxidized proteins in mammalian cells. FASEB J 11:526–534

    Article  CAS  Google Scholar 

  12. Zheng J, Bizzozero OA (2010) Reduced proteasomal activity contributes to the accumulation of carbonylated proteins in chronic experimental autoimmune encephalomyelitis. J Neurochem 115:1556–1567

    Article  CAS  Google Scholar 

  13. Troncoso JC, Costello AC, Kim JH, Johnson GV (1995) Metal-catalyzed oxidation of bovine neurofilaments in vitro. Free Radic Biol Med 18:891–899

    Article  CAS  Google Scholar 

  14. Banik NL, Shields DC (2000) The role of calpain in neurofilament protein degradation associated with spinal cord injury. Methods Mol Biol 144:195–201

    CAS  PubMed  Google Scholar 

  15. Shields DC, Banik NL (1998) Upregulation of calpain activity and expression in experimental allergic encephalomyelitis: a putative role for calpain in demyelination. Brain Res 794:68–74

    Article  CAS  Google Scholar 

  16. Hassen GW, Feliberti J, Kesner L, Stracher A, Mokhtarian F (2008) Prevention of axonal injury using calpain inhibitor in chronic progressive experimental autoimmune encephalomyelitis. Brain Res 1236:206–215

    Article  Google Scholar 

  17. Gold R, Hartung HP, Toyka KV (2000) Animal models for autoimmune demyelinating disorders of the nervous system. Mol Med Today 6:88–91

    Article  CAS  Google Scholar 

  18. Smerjac SM, Bizzozero OA (2008) Cytoskeletal protein carbonylation and degradation in experimental autoimmune encephalomyelitis. J Neurochem 105:763–772

    Article  CAS  Google Scholar 

  19. Hilgart AA, Bizzozero OA (2008) Carbonylation of major cytoskeletal proteins in multiple sclerosis. J Neurochem 104(Suppl.1):PTW06–P03

    Google Scholar 

  20. Zheng J, Bizzozero OA (2010) Accumulation of protein carbonyls within cerebellar astrocytes in murine experimental autoimmune encephalomyelitis. J Neurosci Res 88:3376–3385

    Article  CAS  Google Scholar 

  21. Milligan ED, Sloane EM, Langer SJ, Cruz PE, Chacur M, Spataro L, Wieseler-Frank J, Hammack SE, Maier SF, Flotte TR, Forsayeth JR, Leinwand LA, Chavez R, Watkins LR (2005) Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10. Mol Pain 1:9–22

    Article  Google Scholar 

  22. Hassen GW, Feliberti J, Kesner L, Stracher A, Mokhtarian F (2006) A novel calpain inhibitor for the treatment of acute experimental autoimmune encephalomyelitis. J Neuroimmunol 180:135–146

    Article  CAS  Google Scholar 

  23. Rodgers KJ, Dean RT (2003) Assessment of proteasome activity in cell lysates and tissue homogenates using peptide substrates. Int J Biochem Cell Biol 35:716–727

    Article  CAS  Google Scholar 

  24. Sitte N, Huber M, Grune T, Ladhoff A, Doecke W, Von Zglinicki T, Davies JA (2000) Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. FASEB J 14:1490–1498

    Article  CAS  Google Scholar 

  25. Siklos M, BenAissa M, Thatcher GRJ (2015) Cysteine proteases as therapeutic targets: does selectivity matters? A systematic review of calpain and cathepsin inhibitors. Acta Pharm Sin B 5:506–519

    Article  Google Scholar 

  26. Poppek D, Grune T (2006) Proteasomal defense of oxidative protein modifications. Antioxid Redox Signal 8:173–184

    Article  CAS  Google Scholar 

  27. Muntane G, Daldo E, Martinez A, Rey MJ, Avila J, Perez M, Portero M, Pamplona R, Ayala V, Ferrer I (2006) Glial fibrillary acidic protein is a major target of glycoxidative and lipoxidative damage in Pick’s disease. J Neurochem 99:177–185

    Article  CAS  Google Scholar 

  28. Dalle-Donne I, Rossi R, Giustarini D, Gagliano N, Lusini L, Milzani A, Di Simplicio P, Colombo R (2001) Actin carbonylation: from a simple marker of protein oxidation to relevant signs of severe functional impairment. Free Radic Biol Med 31:1075–1083

    Article  CAS  Google Scholar 

  29. Ozeki M, Miyagawa-Hayashino A, Akatsuka S, Shirase T, Lee WH, Uchida K, Toyokuni S (2005) Susceptibility of actin to modification by 4-hydroxy-2-nonenal. J Chromatogr 827:119–126

    CAS  Google Scholar 

  30. Banan A, Fitzpatrick L, Zhang Y, Keshavarzian A (2001) OPC-compounds prevent oxidant-induced carbonylation and depolymerization of the F-actin cytoskeleton and intestinal barrier hyperpermeability. Free Radic Biol Med 30:287–298

    Article  CAS  Google Scholar 

  31. Neely MD, Boutte A, Milatovic D, Montine TJ (2005) Mechanisms of 4-hydroxynonenal-induced neuronal microtubule dysfunction. Brain Res 1037:90–98

    Article  CAS  Google Scholar 

  32. Gelinas S, Chapados C, Beauregard M, Gosselin I, Martinoli MG (2000) Effect of oxidative stress on stability and structure of neurofilament proteins. Biochem Cell Biol 78:667–674

    Article  CAS  Google Scholar 

  33. Smith MA, Rudnicka-Nawrot M, Richey PL, Praprotnik D, Mulvihill P, Miller CA, Sayre LM, Perry G (1995) Carbonyl-related posttranslational modification of neurofilament protein in the neurofibrillary pathology of Alzheimer’s disease. J Neurochem 64:2660–2666

    Article  CAS  Google Scholar 

  34. Saito K, Nixon RA (1993) Specificity of calcium-activated neutral proteinase (CANP) inhibitors for human mu CANP and mCANP. Neurochem Res 18:231–233

    Article  CAS  Google Scholar 

  35. Guyton MK, Das A, Samantaray D, Wallace GC, Butler JT, Ray SK, Banik NL (2010) Calpeptin attenuated inflammation, cell death, and axonal damage in an animal model of multiple sclerosis. J Neurosci Res 88:2398–2408

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM (1999) Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci USA 96:10403–10408

    Article  CAS  Google Scholar 

  37. Ossipov MH, Bazov I, Gardell LR, Kowal J, Yakovleva T, Usynin I, Ekstrom TJ, Porreca F, Bakalkin G (2007) Control of chronic pain by the ubiquitin proteasome system in the spinal cord. J Neurosci 27:8226–8237

    Article  CAS  Google Scholar 

  38. Hosseini H, Andre P, Lefevre N, Viala L, Walzer T, Peschanski M, Lotteau V (2001) Protection against experimental autoimmune encephalomyelitis by a proteasome modulator. J Neuroimmunol 118:233–244

    Article  CAS  Google Scholar 

  39. Vanderlugt CL, Rahbe SM, Elliott PJ, Dal Canto MC, Miller SD (2000) Treatment of established relapsing experimental autoimmune encephalomyelitis with the proteasome inhibitor PS-519. J Autoimmun 14:205–211

    Article  CAS  Google Scholar 

  40. Johnson VWG, Greewood JA, Costello AC, Troncoso JC (1991) The regulatory role of calmodulin in the proteolysis of individual neurofilament proteins by calpain. Neurochem Res 16:869–873

    Article  CAS  Google Scholar 

  41. Gao JP, Letterier JF (1995) Possible involvement of ubiquitination in neurofilament degradation. Biochem Biophys Res Commun 217:528–539

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Erin Milligan from the Department of Neurosciences at UNM-SOM for helping with the i.t. injections. This work was supported by PHHS Grant NS057755 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar A. Bizzozero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smerjac, S.M., Zheng, J., Hu, CL. et al. The Role of Calpain and Proteasomes in the Degradation of Carbonylated Neuronal Cytoskeletal Proteins in Acute Experimental Autoimmune Encephalomyelitis. Neurochem Res 43, 2277–2287 (2018). https://doi.org/10.1007/s11064-018-2648-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2648-y

Keywords

Navigation