Skip to main content

Advertisement

Log in

Crocin Inhibits Apoptosis and Astrogliosis of Hippocampus Neurons Against Methamphetamine Neurotoxicity via Antioxidant and Anti-inflammatory Mechanisms

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Methamphetamine (METH) is a stimulant drug, which can cause neurotoxicity and increase the risk of neurodegenerative disorders. The mechanisms of acute METH intoxication comprise intra-neuronal events including oxidative stress, dopamine oxidation, and excitotoxicity. According to recent studies, crocin protects neurons by functioning as an anti-oxidant, anti-inflammatory, and anti-apoptotic compound. Accordingly, this study aimed to determine if crocin can protect against METH-induced neurotoxicity. Seventy-two male Wistar rats that weighed 260–300 g were randomly allocated to six groups of control (n = 12), crocin 90 mg/kg group (n = 12), METH (n = 12), METH + crocin 30 mg/kg (n = 12), METH + crocin 60 mg/kg (n = 12), and METH + crocin 90 mg/kg (n = 12). METH neurotoxicity was induced by 40 mg/kg of METH in four injections (e.g., 4 × 10 mg/kg q. 2 h, IP). Crocin was intraperitoneally (IP) injected at 30 min, 24 h, and 48 h after the final injection of METH. Seven days after METH injection, the rats’ brains were removed for biochemical assessment using the ELISA technique, and immunohistochemistry staining was used for caspase-3 and glial fibrillary acidic protein (GFAP) detection. Crocin treatment could significantly increase superoxide dismutase (P < 0.05) and glutathione (P < 0.01) levels and reduce malondialdehyde and TNF-α in comparison with the METH group (P < 0.05). Moreover, crocin could significantly decline the level of caspase-3 and GFAP-positive cells in the CA1 region (P < 0.01). According to the results, crocin exerts neuroprotective effects on METH neurotoxicity via the inhibition of apoptosis and neuroinflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kumar R, Johnson BH, Thompson EB (2004) Overview of the structural basis for transcription regulation by nuclear hormone receptors. Essays Biochem 40:27–40

    Article  CAS  Google Scholar 

  2. Orikabe L et al (2011) Reduced amygdala and hippocampal volumes in patients with methamphetamine psychosis. Schizophrenia Res 132(2):183–189

    Article  Google Scholar 

  3. Quinton MS, Yamamoto BK (2006) Causes and consequences of methamphetamine and MDMA toxicity. AAPS J 8(2):E337–E337

    Article  Google Scholar 

  4. Cunha-Oliveira T, Rego AC, Oliveira CR (2008) Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs. Brain Res Rev 58(1):192–208

    Article  CAS  Google Scholar 

  5. Virmani A et al (2003) Possible mechanism for the neuroprotective effects of l-carnitine on methamphetamine-evoked neurotoxicity. Ann N Y Acad Sci 993(1):197–207

    Article  CAS  Google Scholar 

  6. Ramirez SH et al (2009) Methamphetamine disrupts blood–brain barrier function by induction of oxidative stress in brain endothelial cells. J Cereb Blood Flow Metab 29(12):1933–1945

    Article  CAS  Google Scholar 

  7. Nisticò L et al (1996) The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Hum Mol Genet 5(7):1075–1080

    Article  Google Scholar 

  8. Mehri S et al (2012) Neuroprotective effect of crocin on acrylamide-induced cytotoxicity in PC12 cells. Cell Mol Neurobiol 32(2):227–235

    Article  CAS  Google Scholar 

  9. Ochiai T et al (2004) Crocin prevents the death of rat pheochromyctoma (PC-12) cells by its antioxidant effects stronger than those of α-tocopherol. Neurosci Lett 362(1):61–64

    Article  CAS  Google Scholar 

  10. Ochiai T et al (2007) Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochim Biophys Acta (BBA) 1770(4):578–584

    Article  CAS  Google Scholar 

  11. Papandreou MA et al (2006) Inhibitory activity on amyloid-β aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents. J Agric Food Chem 54(23):8762–8768

    Article  CAS  Google Scholar 

  12. Naghizadeh B, Mansouri SMT, Mashhadian NV (2010) Crocin attenuates cisplatin-induced renal oxidative stress in rats. Food Chem Toxicol 48(10):2650–2655

    Article  CAS  Google Scholar 

  13. Soeda S et al (2001) Crocin suppresses tumor necrosis factor-α-induced cell death of neuronally differentiated PC-12 cells. Life Sci 69(24):2887–2898

    Article  CAS  Google Scholar 

  14. Mehrjerdi FZ et al (2015) The protective effect of remote renal preconditioning against hippocampal ischemia reperfusion injury: role of KATP channels. J Mol Neurosci 57(4):554–560

    Article  CAS  Google Scholar 

  15. Zare Mehrjerdie F, Shoshtari A, Mohseni F, Khastar H, Norouzi P, Asadi Y et al (2018) Sulfur dioxide reduces hippocampal cells death and improves learning and memory deficits in rat model of transient global ischemia/reperfusion. Iranian J Basic Med Sci 21(10):998–1003

    Google Scholar 

  16. Ye Z et al (2008) Immunosuppressive effects of rat mesenchymal stem cells: involvement of CD4+ CD25+ regulatory T cells. Hepatobiliary Pancreat Dis Int 7(6):608–614

    PubMed  Google Scholar 

  17. Erfani S et al (2015) Visfatin inhibits apoptosis and necrosis of hippocampus CA3 cells following transient global ischemia/reperfusion in rats. Int J Peptide Res Ther 21(2):223–228

    Article  CAS  Google Scholar 

  18. Aboutaleb N et al (2016) Protection of hippocampal CA1 neurons against ischemia/reperfusion injury by exercise preconditioning via modulation of Bax/Bcl-2 ratio and prevention of caspase-3 activation. Basic Clin Neurosci 7(1):21

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shamsaei N et al (2015) Exercise preconditioning exhibits neuroprotective effects on hippocampal CA1 neuronal damage after cerebral ischemia. Neural Regen Res 10(8):1245

    Article  Google Scholar 

  20. Tokunaga I et al (2008) The peroxidative DNA damage and apoptosis in methamphetamine-treated rat brain. J Med Investig 55(3, 4):241–245

    Article  Google Scholar 

  21. Cadet JL, Jayanthi S, Deng X (2003) Speed kills: cellular and molecular bases of methamphetamine-induced nerve terminal degeneration and neuronal apoptosis. FASEB J 17(13):1775–1788

    Article  CAS  Google Scholar 

  22. Imam SZ et al (2001) Methamphetamine-induced dopaminergic neurotoxicity: role of peroxynitrite and neuroprotective role of antioxidants and peroxynitrite decomposition catalysts. Ann N Y Acad Sci 939(1):366–380

    Article  CAS  Google Scholar 

  23. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87(1):99–163

    Article  CAS  Google Scholar 

  24. Mennicken F et al (1999) Chemokines and chemokine receptors in the CNS: a possible role in neuroinflammation and patterning. Trend Pharmacol Sci 20(2):73–78

    Article  CAS  Google Scholar 

  25. Miljković D, Timotijević G, Stojković MM (2011) Astrocytes in the tempest of multiple sclerosis. FEBS Lett 585(23):3781–3788

    Article  Google Scholar 

  26. Hirata H et al (1996) Autoradiographic evidence for methamphetamine-induced striatal dopaminergic loss in mouse brain: attenuation in CuZn-superoxide dismutase transgenic mice. Brain Res 714(1–2):95–103

    Article  CAS  Google Scholar 

  27. Ochiai T, Soeda S, Ohno S, Tanaka H, Shoyama Y, Shimeno H (2004) Crocin prevents the death of PC-12 cells through sphingomyelinase-ceramide signaling by increasing glutathione synthesis. Neurochem Int 44:321–330

    Article  CAS  Google Scholar 

  28. Sheng P et al (1996) Nitric oxide is a mediator of methamphetamine (METH)-induced neurotoxicity. Ann N Y Acad Sci 801(1):174–186

    Article  CAS  Google Scholar 

  29. Imam SZ et al (2001) Peroxynitrite plays a role in methamphetamine-induced dopaminergic neurotoxicity: evidence from mice lacking neuronal nitric oxide synthase gene or overexpressing copper–zinc superoxide dismutase. J Neurochem 76(3):745–749

    Article  CAS  Google Scholar 

  30. Zheng Y-Q et al (2007) Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia. Brain Res 1138:86–94

    Article  CAS  Google Scholar 

  31. Burke RE (2007) Inhibition of mitogen-activated protein kinase and stimulation of Akt kinase signaling pathways: two approaches with therapeutic potential in the treatment of neurodegenerative disease. Pharmacol Ther 114(3):261–277

    Article  CAS  Google Scholar 

  32. Hers H (1963) α-Glucosidase deficiency in generalized glycogen-storage disease (Pompe’s disease). Biochem J 86(1):11

    Article  CAS  Google Scholar 

  33. Wu J et al (2015) Lithium protects against methamphetamine-induced neurotoxicity in PC12 cells via Akt/GSK3β/mTOR pathway. Biochem Biophys Res Commun 465(3):368–373

    Article  CAS  Google Scholar 

  34. Qi Y et al (2013) Crocin prevents retinal ischaemia/reperfusion injury-induced apoptosis in retinal ganglion cells through the PI3K/AKT signalling pathway. Exp Eye Res 107:44–51

    Article  CAS  Google Scholar 

  35. Zhao J, O’Connor T, Vassar R (2011) The contribution of activated astrocytes to Aβ production: implications for Alzheimer’s disease pathogenesis. J Neuroinflamm 8(1):150

    Article  CAS  Google Scholar 

  36. Morgan JE (2000) Optic nerve head structure in glaucoma: astrocytes as mediators of axonal damage. Eye 14:437–444

    Article  Google Scholar 

  37. Kato H et al (2003) Protection of dopaminergic neurons with a novel astrocyte modulating agent (R)-(–)-2-propyloctanoic acid (ONO-2506) in an MPTP-mouse model of Parkinson’s disease. J Neurol Sci 208(1):9–15

    Article  CAS  Google Scholar 

  38. Gonçalves J et al (2008) Methamphetamine-induced early increase of IL-6 and TNF-α mRNA expression in the mouse brain. Ann N Y Acad Sci 1139(1):103–111

    Article  Google Scholar 

  39. Gonçalves J et al (2010) Methamphetamine-induced neuroinflammation and neuronal dysfunction in the mice hippocampus: preventive effect of indomethacin. Eur J Neurosci 31(2):315–326

    Article  Google Scholar 

  40. Lee YW et al (2002) Methamphetamine activates DNA binding of specific redox-responsive transcription factors in mouse brain. J Neurosci Res 70(1):82–89

    Article  CAS  Google Scholar 

  41. Qin L et al (2002) Microglia enhance β-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem 83(4):973–983

    Article  CAS  Google Scholar 

  42. Lee YW et al (2001) Methamphetamine induces AP-1 and NF-κB binding and transactivation in human brain endothelial cells. J Neurosci Res 66(4):583–591

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Khaksari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All the applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafahi, M., Vaezi, G., Shajiee, H. et al. Crocin Inhibits Apoptosis and Astrogliosis of Hippocampus Neurons Against Methamphetamine Neurotoxicity via Antioxidant and Anti-inflammatory Mechanisms. Neurochem Res 43, 2252–2259 (2018). https://doi.org/10.1007/s11064-018-2644-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2644-2

Keywords

Navigation