Skip to main content

Advertisement

Log in

Inhibition of Acid Sensing Ion Channel 3 Aggravates Seizures by Regulating NMDAR Function

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The existing data about whether acid sensing ion channels (ASICs) are proconvulsant or anticonvulsant are controversial. Particularly, acid sensing ion channel 3 (ASIC3) is the most sensitive to extracellular pH and has the characteristic ability to generate a biphasic current, but few studies have focused on the role of ASIC3 in seizure. Here we found ASIC3 expression was increased in the hippocampus of pilocarpine induced seizure rats, as well as in hippocampal neuronal cultures undergoing epileptiform discharge elicited by Mg2+-free media. Furthermore, ASIC3 blockade by the selective inhibitor APETx2 shortened seizure onset latency and increased seizure severity compared with the control in the pilocarpine induced seizure model. Incubation with APETx2 enhanced the excitability of primary cultured hippocampal neurons in Mg2+-free media. Notably, the aggravated seizure was associated with upregulation of the N-methyl-d-aspartate subtype of glutamate receptors (NMDARs), increased NMDAR mediated excitatory neurotransmission and subsequent activation of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cAMP-response element binding protein (CREB) signaling pathway. Moreover, co-immunoprecipitation confirmed the interaction between ASIC3 and NMDAR subunits, and NMDARs blockade prevented the aggravated seizure caused by ASIC3 inhibition. Taken together, our findings suggest that ASIC3 inhibition aggravates seizure and potentiates seizure induced hyperexcitability at least partly by the NMDAR/CaMKII/CREB signaling pathway, which implies that ASIC3 agonists may be a promising approach for seizure treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. McNamara JO (1999) Emerging insights into the genesis of epilepsy. Nature 399:A15–A22

    Article  PubMed  CAS  Google Scholar 

  2. French JA (2007) Refractory epilepsy: clinical overview. Epilepsia 48(Suppl 1):3–7

    Article  PubMed  Google Scholar 

  3. Somjen GG (1984) Acidification of interstitial fluid in hippocampal formation caused by seizures and by spreading depression. Brain Res 311:186–188

    Article  PubMed  CAS  Google Scholar 

  4. Wang RI, Sonnenschein RR (1955) PH of cerebral cortex during induced convulsions. J Neurophysiol 18:130–137

    Article  PubMed  CAS  Google Scholar 

  5. Boscardin E, Alijevic O, Hummler E, Frateschi S, Kellenberger S (2016) The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC): IUPHAR review 19. Br J Pharmacol 173:2671–2701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wu W, Cheng C, Sun W, Wong C, Chen C (2012) Targeting ASIC3 for pain, anxiety, and insulin resistance. Pharmacol Ther 134:127–138

    Article  PubMed  CAS  Google Scholar 

  7. Biagini G, Babinski K, Avoli M, Marcinkiewicz M, Seguela P (2001) Regional and subunit-specific downregulation of acid-sensing ion channels in the pilocarpine model of epilepsy. Neurobiol Dis 8:45–58

    Article  PubMed  CAS  Google Scholar 

  8. Wu H, Wang C, Liu B, Li H, Zhang Y, Dong S, Gao G, Zhang H (2015) Altered expression pattern of acid-sensing ion channel isoforms in piriform cortex after seizures. Mol Neurobiol 53:1782–1793

    Article  PubMed  CAS  Google Scholar 

  9. Ali A, Pillai KP, Ahmad FJ, Dua Y, Vohora D (2006) Anticonvulsant effect of amiloride in pentetrazole-induced status epilepticus in mice. Pharmacol Rep 58:242–245

    PubMed  CAS  Google Scholar 

  10. N’Gouemo P (2008) Amiloride delays the onset of pilocarpine-induced seizures in rats. Brain Res 1222:230–232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ali A, Ahmad FJ, Pillai KK, Vohora D (2004) Evidence of the antiepileptic potential of amiloride with neuropharmacological benefits in rodent models of epilepsy and behavior. Epilepsy Behav 5:322–328

    Article  PubMed  Google Scholar 

  12. Ali A, Ahmad FJ, Pillai KK, Vohora D (2005) Amiloride protects against pentylenetetrazole-induced kindling in mice. Br J Pharmacol 145:880–884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ievglevskyi O, Isaev D, Netsyk O, Romanov A, Fedoriuk M, Maximyuk O, Isaeva E, Akaike N, Krishtal O (2016) Acid-sensing ion channels regulate spontaneous inhibitory activity in the hippocampus: possible implications for epilepsy. Philos Trans R Soc Lond B Biol Sci 371:20150431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Xiong ZG, Pignataro G, Li M, Chang SY, Simon RP (2008) Acid-sensing ion channels (ASICs) as pharmacological targets for neurodegenerative diseases. Curr Opin Pharmacol 8:25–32

    Article  PubMed  CAS  Google Scholar 

  15. Ziemann AE, Schnizler MK, Albert GW, Severson MA, Howard MR, Welsh MJ, Wemmie JA (2008) Seizure termination by acidosis depends on ASIC1a. Nat Neurosci 11:816–822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Qadri YJ, Rooj AK, Fuller CM (2012) ENaCs and ASICs as therapeutic targets. Am J Physiol Cell Physiol 302:C943–C965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Waldmann R, Bassilana F, de Weille J, Champigny G, Heurteaux C, Lazdunski M (1997) Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons. J Biol Chem 272:20975–20978

    Article  PubMed  CAS  Google Scholar 

  18. Cao Q, Wang W, Gu J, Jiang G, Wang K, Xu Z, Li J, Chen G, Wang X (2014) Elevated expression of acid-sensing ion channel 3 inhibits epilepsy via activation of interneurons. Mol Neurobiol 53:485–498

    Article  PubMed  CAS  Google Scholar 

  19. Karczewski J, Spencer RH, Garsky VM, Liang A, Leitl MD, Cato MJ, Cook SP, Kane S, Urban MO (2010) Reversal of acid-induced and inflammatory pain by the selective ASIC3 inhibitor, APETx2. Br J Pharmacol 161:950–960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kawai N, Sakai N, Okuro M, Karakawa S, Tsuneyoshi Y, Kawasaki N, Takeda T, Bannai M, Nishino S (2015) The sleep-promoting and hypothermic effects of glycine are mediated by NMDA receptors in the suprachiasmatic nucleus. Neuropsychopharmacology 40:1405–1416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lei LG, Sun S, Gao YJ, Zhao ZQ, Zhang YQ (2004) NMDA receptors in the anterior cingulate cortex mediate pain-related aversion. Exp Neurol 189:413–421

    Article  PubMed  CAS  Google Scholar 

  22. Zhang Y, Li Z, Gu J, Zhang Y, Wang W, Shen H, Chen G, Wang X (2015) Plic-1, a new target in repressing epileptic seizure by regulation of GABAAR function in patients and a rat model of epilepsy. Clin Sci 129:1207–1223

    Article  PubMed  CAS  Google Scholar 

  23. Deval E, Friend V, Thirant C, Salinas M, Jodar M, Lazdunski M, Lingueglia E (2006) Regulation of sensory neuron-specific acid-sensing ion channel 3 by the adaptor protein Na+/H+ exchanger regulatory factor-1. J Biol Chem 281:1796–1807

    Article  PubMed  CAS  Google Scholar 

  24. Nagarkatti N, Deshpande LS, Carter DS, DeLorenzo RJ (2010) Dantrolene inhibits the calcium plateau and prevents the development of spontaneous recurrent epileptiform discharges following in vitro status epilepticus. Eur J Neurosci 32:80–88

    Article  PubMed  PubMed Central  Google Scholar 

  25. Deshpande LS, Nagarkatti N, Ziobro JM, Sombati S, DeLorenzo RJ (2008) Carisbamate prevents the development and expression of spontaneous recurrent epileptiform discharges and is neuroprotective in cultured hippocampal neurons. Epilepsia 49:1795–1802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Diochot S, Baron A, Rash LD, Deval E, Escoubas P, Scarzello S, Salinas M, Lazdunski M (2004) A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. EMBO J 23:1516–1525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhu Y, Wienecke CFR, Nachtrab G, Chen X (2016) A thalamic input to the nucleus accumbens mediates opiate dependence. Nature 530:219–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Parker PRL, Lalive AL, Kreitzer AC (2016) Pathway-specific remodeling of thalamostriatal synapses in parkinsonian mice. Neuron 89:734–740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Lewitus GM, Konefal SC, Greenhalgh AD, Pribiag H, Augereau K, Stellwagen D (2016) Microglial TNF-α suppresses cocaine-induced plasticity and behavioral sensitization. Neuron 90:483–491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Liang JJ, Huang LF, Chen XM, Pan SQ, Lu ZN, Xiao ZM (2015) Amiloride suppresses pilocarpine-induced seizures via ASICs other than NHE in rats. Int J Clin Exp Pathol 8:14507–14513

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82:735–767

    Article  PubMed  CAS  Google Scholar 

  32. Sombati S, Delorenzo RJ (1995) Recurrent spontaneous seizure activity in hippocampal neuronal networks in culture. J Neurophysiol 73:1706–1711

    Article  PubMed  CAS  Google Scholar 

  33. Velisek L, Dreier JP, Stanton PK, Heinemann U, Moshe SL (1994) Lowering of extracellular pH suppresses low-Mg(2+)-induces seizures in combined entorhinal cortex-hippocampal slices. Exp Brain Res 101:44–52

    Article  PubMed  CAS  Google Scholar 

  34. Mitchell WG, Grubbs RC (1956) Inhibition of audiogenic seizures by carbon dioxide. Science 123:223–224

    Article  PubMed  CAS  Google Scholar 

  35. Barker-Haliski M, White HS (2015) Glutamatergic mechanisms associated with seizures and epilepsy. Cold Spring Harb Perspect Med 5:a22863

    Article  CAS  Google Scholar 

  36. Naylor DE, Liu H, Niquet J, Wasterlain CG (2013) Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus. Neurobiol Dis 54:225–238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ghasemi M, Schachter SC (2011) The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy Behav 22:617–640

    Article  PubMed  Google Scholar 

  38. Rice AC, DeLorenzo RJ (1998) NMDA receptor activation during status epilepticus is required for the development of epilepsy. Brain Res 782:240–247

    Article  PubMed  CAS  Google Scholar 

  39. Di Maio R, Mastroberardino PG, Hu X, Montero L, Greenamyre JT (2011) Pilocapine alters NMDA receptor expression and function in hippocampal neurons: NADPH oxidase and ERK1/2 mechanisms. Neurobiol Dis 42:482–495

    Article  PubMed  CAS  Google Scholar 

  40. Wang H, Peng RY (2016) Basic roles of key molecules connected with NMDAR signaling pathway on regulating learning and memory and synaptic plasticity. Mil Med Res 3:26

    Article  PubMed  PubMed Central  Google Scholar 

  41. Steven A, Seliger B (2016) Control of CREB expression in tumors: from molecular mechanisms and signal transduction pathways to therapeutic target. Oncotarget 7:35454–35465

    PubMed  PubMed Central  Google Scholar 

  42. Johannessen M, Delghandi MP, Moens U (2004) What turns CREB on? Cell Signal 16:1211–1227

    Article  PubMed  CAS  Google Scholar 

  43. Lund IV, Hu Y, Raol YH, Benham RS, Faris R, Russek SJ, Brooks-Kayal AR (2008) BDNF selectively regulates GABAA receptor transcription by activation of the JAK/STAT pathway. Sci Signal 1:a9

    Article  CAS  Google Scholar 

  44. Rakhade SN, Yao B, Ahmed S, Asano E, Beaumont TL, Shah AK, Draghici S, Krauss R, Chugani HT, Sood S, Loeb JA (2005) A common pattern of persistent gene activation in human neocortical epileptic foci. Ann Neurol 58:736–747

    Article  PubMed  CAS  Google Scholar 

  45. Zhu X, Dubey D, Bermudez C, Porter BE (2015) Suppressing cAMP response element-binding protein transcription shortens the duration of status epilepticus and decreases the number of spontaneous seizures in the pilocarpine model of epilepsy. Epilepsia 56:1870–1878

    Article  PubMed  CAS  Google Scholar 

  46. Zhu X, Han X, Blendy JA, Porter BE (2012) Decreased CREB levels suppress epilepsy. Neurobiol Dis 45:253–263

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by National Natural Science Foundation of China (81471133), Natural Science Foundation of Hubei Province (2014CFB734), Health and Family Planning Commission of Hubei Province scientific research project (WJ2015MA007), and Wuhan Science and Technology Bureau scientific research project (2015060101010047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zu-Neng Lu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., Xiao, ZM., Wang, X. et al. Inhibition of Acid Sensing Ion Channel 3 Aggravates Seizures by Regulating NMDAR Function. Neurochem Res 43, 1227–1241 (2018). https://doi.org/10.1007/s11064-018-2540-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2540-9

Keywords

Navigation