Skip to main content
Log in

Knockdown of Heat Shock Proteins HSPA6 (Hsp70B’) and HSPA1A (Hsp70-1) Sensitizes Differentiated Human Neuronal Cells to Cellular Stress

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Heat shock proteins are involved in cellular repair and protective mechanisms that counter characteristic features of neurodegenerative diseases such as protein misfolding and aggregation. The HSPA (Hsp70) multigene family includes the widely studied HSPA1A (Hsp70-1) and the little studied HSPA6 (Hsp70B’) which is present in the human genome and not in mouse and rat. The effect of knockdown of HSPA6 and HSPA1A expression was examined in relation to the ability of differentiated human SH-SY5Y neuronal cells to tolerate thermal stress. Low dose co-application of celastrol and arimoclomol, which induces Hsps, enhanced the ability of differentiated neurons to survive heat shock. Small interfering RNA (siRNA) knockdown of HSPA6 and HSPA1A resulted in loss of the protective effect of co-application of celastrol/arimoclomol. More pronounced effects on neuronal viability were apparent at 44 °C heat shock compared to 43 °C. siRNA knockdown suggests that HSPA6 and HSPA1A contribute to protection of differentiated human neuronal cells from cellular stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Duncan EJ, Cheetham ME, Chapple JP, van der Spuy J (2015) The role of HSP70 and its co-chaperones in protein misfolding, aggregation and disease. Subcell Biochem 78:243–273. https://doi.org/10.1007/978-3-319-11731-7_12

    Article  CAS  PubMed  Google Scholar 

  2. Smith HL, Li W, Cheetham ME (2015) Molecular chaperones and neuronal proteostasis. Semin Cell Dev Biol 40:142–152. https://doi.org/10.1016/j.semcdb.2015.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Paul S, Mahanta S (2014) Association of heat-shock proteins in various neurodegenerative disorders: is it a master key to open the therapeutic door? Mol Cell Biochem 386(1–2):45–61. https://doi.org/10.1007/s11010-013-1844-y

    Article  CAS  PubMed  Google Scholar 

  4. Kampinga HH, Bergink S (2016) Heat shock proteins as potential targets for protective strategies in neurodegeneration. Lancet Neurol 15(7):748–759. https://doi.org/10.1016/S1474-4422(16)00099-5

    Article  CAS  PubMed  Google Scholar 

  5. Deane CA, Brown IR (2016) Induction of heat shock proteins in differentiated human neuronal cells following co-application of celastrol and arimoclomol. Cell Stress Chaperones 21(5):837–848. https://doi.org/10.1007/s12192-016-0708-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Finka A, Goloubinoff P (2013) Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis. Cell Stress Chaperones 18(5):591–605. https://doi.org/10.1007/s12192-013-0413-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Becirovic L, Brown IR (2017) Targeting of heat shock protein HSPA6 (HSP70B’) to the periphery of nuclear speckles is disrupted by a transcription inhibitor following thermal stress in human neuronal cells. Neurochem Res 42(2):406–414. https://doi.org/10.1007/s11064-016-2084-9

    Article  CAS  PubMed  Google Scholar 

  8. Khalouei S, Chow AM, Brown IR (2014) Stress-induced localization of HSPA6 (HSP70B’) and HSPA1A (HSP70-1) proteins to centrioles in human neuronal cells. Cell Stress Chaperones 19(3):321–327. https://doi.org/10.1007/s12192-013-0459-2

    Article  CAS  PubMed  Google Scholar 

  9. Khalouei S, Chow AM, Brown IR (2014) Localization of heat shock protein HSPA6 (HSP70B’) to sites of transcription in cultured differentiated human neuronal cells following thermal stress. J Neurochem 131(6):743–754. https://doi.org/10.1111/jnc.12970

    Article  CAS  PubMed  Google Scholar 

  10. Shorbagi S, Brown IR (2016) Dynamics of the association of heat shock protein HSPA6 (Hsp70B’) and HSPA1A (Hsp70-1) with stress-sensitive cytoplasmic and nuclear structures in differentiated human neuronal cells. Cell Stress Chaperones 21(6):993–1003. https://doi.org/10.1007/s12192-016-0724-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Deane CA, Brown IR (2017) Differential targeting of Hsp70 Heat Shock Proteins HSPA6 and HSPA1A with components of a protein disaggregation/refolding machine in differentiated human neuronal cells following thermal stress. Front Neurosci 11:227. https://doi.org/10.3389/fnins.2017.00227

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hageman J, van Waarde MA, Zylicz A, Walerych D, Kampinga HH (2011) The diverse members of the mammalian HSP70 machine show distinct chaperone-like activities. Biochem J 435(1):127–142. https://doi.org/10.1042/BJ20101247

    Article  CAS  PubMed  Google Scholar 

  13. Noonan E, Giardina C, Hightower L (2008) Hsp70B’ and Hsp72 form a complex in stressed human colon cells and each contributes to cytoprotection. Exp Cell Res 314(13):2468–2476. https://doi.org/10.1016/j.yexcr.2008.05.002

    Article  CAS  PubMed  Google Scholar 

  14. Noonan EJ, Place RF, Giardina C, Hightower LE (2007) Hsp70B’ regulation and function. Cell Stress Chaperones 12(4):393–402. https://doi.org/10.1379/CSC-278e.1

    Article  PubMed  PubMed Central  Google Scholar 

  15. Noonan EJ, Place RF, Rasoulpour RJ, Giardina C, Hightower LE (2007) Cell number-dependent regulation of Hsp70B’ expression: evidence of an extracellular regulator. J Cell Physiol 210(1):201–211. https://doi.org/10.1002/jcp.20875

    Article  CAS  PubMed  Google Scholar 

  16. Noonan EJ, Fournier G, Hightower LE (2008) Surface expression of Hsp70B’ in response to proteasome inhibition in human colon cells. Cell Stress Chaperones 13(1):105–110. https://doi.org/10.1007/s12192-007-0003-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheung YT, Lau WK, Yu MS, Lai CS, Yeung SC, So KF, Chang RC (2009) Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology 30(1):127–135. https://doi.org/10.1016/j.neuro.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  18. Jacobs S, Lie DC, DeCicco KL, Shi Y, DeLuca LM, Gage FH, Evans RM (2006) Retinoic acid is required early during adult neurogenesis in the dentate gyrus. Proc Natl Acad Sci USA 103(10):3902–3907. https://doi.org/10.1073/pnas.0511294103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ross RA, Spengler BA (2007) Human neuroblastoma stem cells. Semin Cancer Biol 17(3):241–247. https://doi.org/10.1016/j.semcancer.2006.04.006

    Article  CAS  PubMed  Google Scholar 

  20. Bonnet E, Touyarot K, Alfos S, Pallet V, Higueret P, Abrous DN (2008) Retinoic acid restores adult hippocampal neurogenesis and reverses spatial memory deficit in vitamin A deprived rats. PLoS ONE 3(10):e3487. https://doi.org/10.1371/journal.pone.0003487

    Article  PubMed  PubMed Central  Google Scholar 

  21. Maden M (2007) Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 8(10):755–765. https://doi.org/10.1038/nrn2212

    Article  CAS  PubMed  Google Scholar 

  22. Plowey ED, Cherra SJ 3rd, Liu YJ, Chu CT (2008) Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem 105(3):1048–1056. https://doi.org/10.1111/j.1471-4159.2008.05217.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Imamura K, Takeshima T, Kashiwaya Y, Nakaso K, Nakashima K (2006) D-beta-hydroxybutyrate protects dopaminergic SH-SY5Y cells in a rotenone model of Parkinson’s disease. J Neurosci Res 84(6):1376–1384. https://doi.org/10.1002/jnr.21021

    Article  CAS  PubMed  Google Scholar 

  24. Krishna A, Biryukov M, Trefois C, Antony PM, Hussong R, Lin J, Heinaniemi M, Glusman G, Koglsberger S, Boyd O, van den Berg BH, Linke D, Huang D, Wang K, Hood L, Tholey A, Schneider R, Galas DJ, Balling R, May P (2014) Systems genomics evaluation of the SH-SY5Y neuroblastoma cell line as a model for Parkinson’s disease. BMC Genom 15:1154. https://doi.org/10.1186/1471-2164-15-1154

    Article  Google Scholar 

  25. Kovalevich J, Langford D (2013) Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol 1078:9–21. https://doi.org/10.1007/978-1-62703-640-5_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Deane CA, Brown IR (2017) Components of a mammalian protein disaggregation/refolding machine are targeted to nuclear speckles following thermal stress in differentiated human neuronal cells. Cell Stress Chaperones 22(2):191–200. https://doi.org/10.1007/s12192-016-0753-x

    Article  CAS  PubMed  Google Scholar 

  27. Nillegoda NB, Bukau B (2015) Metazoan Hsp70-based protein disaggregases: emergence and mechanisms. Front Mol Biosci 2:57. https://doi.org/10.3389/fmolb.2015.00057

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nillegoda NB, Kirstein J, Szlachcic A, Berynskyy M, Stank A, Stengel F, Arnsburg K, Gao X, Scior A, Aebersold R, Guilbride DL, Wade RC, Morimoto RI, Mayer MP, Bukau B (2015) Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature 524(7564):247–251. https://doi.org/10.1038/nature14884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bregman DB, Du L, van der Zee S, Warren SL (1995) Transcription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains. J Cell Biol 129(2):287–298. https://doi.org/10.1083/jcb.129.2.287

    Article  CAS  PubMed  Google Scholar 

  30. Hall LL, Smith KP, Byron M, Lawrence JB (2006) Molecular anatomy of a speckle. Anat Rec A 288(7):664–675. https://doi.org/10.1002/ar.a.20336

    Article  Google Scholar 

  31. Mortillaro MJ, Blencowe BJ, Wei X, Nakayasu H, Du L, Warren SL, Sharp PA, Berezney R (1996) A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc Natl Acad Sci USA 93(16):8253–8257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brown JM, Green J, das Neves RP, Wallace HA, Smith AJ, Hughes J, Gray N, Taylor S, Wood WG, Higgs DR, Iborra FJ, Buckle VJ (2008) Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J Cell Biol 182(6):1083–1097. https://doi.org/10.1083/jcb.200803174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rieder D, Ploner C, Krogsdam AM, Stocker G, Fischer M, Scheideler M, Dani C, Amri EZ, Muller WG, McNally JG, Trajanoski Z (2014) Co-expressed genes prepositioned in spatial neighborhoods stochastically associate with SC35 speckles and RNA polymerase II factories. Cell Mol Life Sci 71(9):1741–1759. https://doi.org/10.1007/s00018-013-1465-3

    Article  CAS  PubMed  Google Scholar 

  34. Rieder D, Trajanoski Z, McNally JG (2012) Transcription factories. Front Genet 3:221. https://doi.org/10.3389/fgene.2012.00221

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by grants from NSERC Canada to I.R.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian R. Brown.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deane, C.A.S., Brown, I.R. Knockdown of Heat Shock Proteins HSPA6 (Hsp70B’) and HSPA1A (Hsp70-1) Sensitizes Differentiated Human Neuronal Cells to Cellular Stress. Neurochem Res 43, 340–350 (2018). https://doi.org/10.1007/s11064-017-2429-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2429-z

Keywords

Navigation