Skip to main content
Log in

Paraquat-Induced Movement Disorder in Relation to Oxidative Stress-Mediated Neurodegeneration in the Brain of Drosophila melanogaster

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Author Correction to this article was published on 09 January 2018

This article has been updated

Abstract

Exposure to pesticides like paraquat (PQ) is considered as a risk factor for Parkinson’s disease (PD). PQ has been shown to induce PD-like phenotype in experimental animals. Drosophila, a valuable laboratory model organism, is widely used to study neurodegenerative disorders including PD. The acute (single dose) PQ model of PD in Drosophila is associated with high mortality as well as reversibility of locomotor deficits and, therefore, does not replicate the disease phenotype. We have investigated the relevance of the acute and multiple (sublethal) dose of PQ to induce PD-like symptoms in Drosophila and shown that multiple-dose of PQ induces irreversible locomotor impairment without significant mortality. Our study has provided ultrastructural evidence for neurodegeneration involving mitochondrial damage in the brain caused by free radical-induced oxidative stress, which leads to locomotor impairment in Drosophila. The multiple (sublethal) dose of PQ could be an appropriate Drosophila model to induce PD-like symptoms of movement disorder associated with neurodegeneration, which could be useful to evaluate neuroprotective compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 09 January 2018

    The original version of this article unfortunately contained a mistake. The entries missing in the reference list are given below and their corresponding citations are provided in the Discussion section text.

References

  1. Rodriguez M, Morales I, Rodriguez-Sabate C et al (2014) The degeneration and replacement of dopamine cells in Parkinson’s disease: the role of aging. Front Neuroanat 8:80

    Article  PubMed  PubMed Central  Google Scholar 

  2. Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272

    Article  CAS  PubMed  Google Scholar 

  3. Papapetropoulos S, Adi N, Ellul J et al (2007) A prospective study of familial versus sporadic Parkinson’s disease. Neurodegener Dis 4:424–427

    Article  PubMed  Google Scholar 

  4. Warner TT, Schapira AH V (2003) Genetic and environmental factors in the cause of Parkinson’s disease. Ann Neurol 53(Suppl 3):S16–S23–5

    Article  CAS  PubMed  Google Scholar 

  5. Butterfield PG, Valanis BG, Spencer PS et al (1993) Environmental antecedents of young-onset Parkinson’s disease. Neurology 43:1150–1158

    Article  CAS  PubMed  Google Scholar 

  6. Gorell JM, Johnson CC, Rybicki BA et al (1998) The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 50:1346–1350

    Article  CAS  PubMed  Google Scholar 

  7. McCormack AL, Thiruchelvam M, Manning-Bog AB et al (2002) Environmental risk factors and Parkinson’s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 10:119–127

    Article  CAS  PubMed  Google Scholar 

  8. Ossowska K, Wardas J, Smiałowska M et al (2005) A slowly developing dysfunction of dopaminergic nigrostriatal neurons induced by long-term paraquat administration in rats: an animal model of preclinical stages of Parkinson’s disease? Eur J Neurosci 22:1294–1304

    Article  CAS  PubMed  Google Scholar 

  9. Chaudhuri A, Bowling K, Funderburk C et al (2007) Interaction of genetic and environmental factors in a Drosophila Parkinsonism model. J Neurosci 27:2457–2467

    Article  CAS  PubMed  Google Scholar 

  10. Brooks A, Chadwick C, Gelbard H et al (1999) Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res 823:1–10

    Article  CAS  PubMed  Google Scholar 

  11. Chanyachukul T, Yoovathaworn K, Thongsaard W et al (2004) Attenuation of paraquat-induced motor behavior and neurochemical disturbances by l-valine in vivo. Toxicol Lett 150:259–269

    Article  CAS  PubMed  Google Scholar 

  12. McCormack AL, Atienza JG, Johnston LC et al (2005) Role of oxidative stress in paraquat-induced dopaminergic cell degeneration. J Neurochem 93:1030–1037

    Article  CAS  PubMed  Google Scholar 

  13. Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26–S36–8

    Article  CAS  PubMed  Google Scholar 

  14. Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4:600–609

    Article  CAS  PubMed  Google Scholar 

  15. Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398

    Article  CAS  PubMed  Google Scholar 

  16. Jahromi SR, Haddadi M, Shivanandappa T, Ramesh SR (2015) Attenuation of neuromotor deficits by natural antioxidants of Decalepis hamiltonii in transgenic Drosophila model of Parkinson’s disease. Neuroscience 293:136–150

    Article  CAS  PubMed  Google Scholar 

  17. Hosamani R, Muralidhara (2013) Acute exposure of Drosophila melanogaster to paraquat causes oxidative stress and mitochondrial dysfunction. Arch Insect Biochem Physiol 83:25–40

    Article  CAS  PubMed  Google Scholar 

  18. Navarro JA, Heßner S, Yenisetti SC et al (2014) Analysis of dopaminergic neuronal dysfunction in genetic and toxin-induced models of Parkinson’s disease in Drosophila. J Neurochem 131:369–382

    Article  CAS  PubMed  Google Scholar 

  19. Mehdi SH, Qamar A (2013) Paraquat-induced ultrastructural changes and DNA damage in the nervous system is mediated via oxidative-stress-induced cytotoxicity in Drosophila melanogaster. Toxicol Sci 134:355–365

    Article  CAS  PubMed  Google Scholar 

  20. Quintero-Espinosa D, Jimenez-Del-Rio M, Velez-Pardo C (2017) Knockdown transgenic Lrrk Drosophila resists paraquat-induced locomotor impairment and neurodegeneration: a therapeutic strategy for Parkinson’s disease. Brain Res 1657:253–261

    Article  CAS  PubMed  Google Scholar 

  21. Martin CA, Barajas A, Lawless G et al (2014) Synergistic effects on dopamine cell death in a Drosophila model of chronic toxin exposure. Neurotoxicology 44:344–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  CAS  PubMed  Google Scholar 

  23. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  24. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  25. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  PubMed  Google Scholar 

  26. Aebi H (1983) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 3rd edn. Verlag, Chemie, Weinheim, pp. 273–286

    Google Scholar 

  27. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  29. Kucherenko MM, Marrone AK, Rishko VM et al (2010) Paraffin-embedded and frozen sections of Drosophila adult muscles. J Vis Exp 46:2438

    Google Scholar 

  30. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hayat MA (2000) Principles and techniques of electron microscopy: biological applications. Cambridge University Press, Cambridge

    Google Scholar 

  32. Frasca JM, Parks VR (1965) A routine technique for double-staining ultrathin sections using uranyl and lead salts. J Cell Biol 25:157–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lawal HO, Chang H-Y, Terrell AN et al (2010) The Drosophila vesicular monoamine transporter reduces pesticide-induced loss of dopaminergic neurons. Neurobiol Dis 40:102–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Filograna R, Godena VK, Sanchez-Martinez A et al (2016) Superoxide dismutase (SOD)-mimetic M40403 is protective in cell and fly models of paraquat toxicity: implications for Parkinson disease. J Biol Chem 291:9257–9267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rzezniczak TZ, Douglas LA, Watterson JH, Merritt TJS (2011) Paraquat administration in Drosophila for use in metabolic studies of oxidative stress. Anal Biochem 419:345–347

    Article  CAS  PubMed  Google Scholar 

  36. Fridovich I, Hassan HM (1979) Paraquat and the exacerbation of oxygen toxicity. Trends Biochem Sci 4:113–115

    Article  CAS  Google Scholar 

  37. Beal MF (2004) Mitochondrial dysfunction and oxidative damage in Alzheimer’s and Parkinson’s Diseases and coenzyme Q10 as a potential treatment. J Bioenerg Biomembr 36:381–386

    Article  CAS  PubMed  Google Scholar 

  38. Krůček T, Korandová M, Šerý M et al (2015) Effect of low doses of herbicide paraquat on antioxidant defense in Drosophila. Arch Insect Biochem Physiol 88:235–248

    Article  PubMed  Google Scholar 

  39. Shukla AK, Ratnasekhar C, Pragya P et al (2016) Metabolomic analysis provides insights on paraquat-induced Parkinson-like symptoms in Drosophila melanogaster. Mol Neurobiol 53:254–269

    Article  CAS  PubMed  Google Scholar 

  40. Bostantjopoulou S, Kyriazis G, Katsarou Z et al (1996) Superoxide dismutase activity in early and advanced Parkinson’s disease. Funct Neurol 12:63–68

    Google Scholar 

  41. Shimada H, Hirano S, Shinotoh H et al (2009) Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology 73:273–278

    Article  CAS  PubMed  Google Scholar 

  42. Müller MLTM, Bohnen NI (2013) Cholinergic dysfunction in Parkinson’s disease. Curr Neurol Neurosci Rep 13:377

    Article  PubMed  PubMed Central  Google Scholar 

  43. Haddadi M, Jahromi SR, Sagar BKC et al (2014) Brain aging, memory impairment and oxidative stress: a study in Drosophila melanogaster. Behav Brain Res 259:60–69

    Article  CAS  PubMed  Google Scholar 

  44. Banerjee R, Starkov AA, Beal MF, Thomas B (2009) Mitochondrial dysfunction in the limelight of Parkinson’s disease pathogenesis. Biochim Biophys Acta 1792:651–663

    Article  CAS  PubMed  Google Scholar 

  45. Meyer JN, Leung MCK, Rooney JP et al (2013) Mitochondria as a target of environmental toxicants. Toxicol Sci 134:1–17. doi:10.1093/toxsci/kft102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Castello PR, Drechsel DA, Patel M (2007) Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. J Biol Chem 282:14186–14193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  48. McCarthy S, Somayajulu M, Sikorska M et al (2004) Paraquat induces oxidative stress and neuronal cell death; neuroprotection by water-soluble Coenzyme Q10. Toxicol Appl Pharmacol 201:21–31

    Article  CAS  PubMed  Google Scholar 

  49. Peng J, Stevenson FF, Doctrow SR, Andersen JK (2005) Superoxide dismutase/catalase mimetics are neuroprotective against selective paraquat-mediated dopaminergic neuron death in the substantial nigra: implications for Parkinson disease. J Biol Chem 280:29194–29198

    Article  CAS  PubMed  Google Scholar 

  50. Lessing D, Bonini NM (2009) Maintaining the brain: insight into human neurodegeneration from Drosophila melanogaster mutants. Nat Rev Genet 10:359–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3:461–491

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kuter K, Śmiałowska M, Wierońska J et al (2007) Toxic influence of subchronic paraquat administration on dopaminergic neurons in rats. Brain Res 1155:196–207

    Article  CAS  PubMed  Google Scholar 

  53. Chaudhuri KR, Healy DG, Schapira AH V (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5:235–245

    Article  PubMed  Google Scholar 

  54. Schapira AHV, Bezard E, Brotchie J et al (2006) Novel pharmacological targets for the treatment of Parkinson’s disease. Nat Rev Drug Discov 5:845–854

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The first author thanks Department of Science and Technology, Government of India, for the financial support under INSPIRE fellowship program. Thanks are also due to the Chairperson, Department of Zoology, University of Mysore, Mysuru, for the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Shivanandappa.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s11064-017-2458-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niveditha, S., Ramesh, S.R. & Shivanandappa, T. Paraquat-Induced Movement Disorder in Relation to Oxidative Stress-Mediated Neurodegeneration in the Brain of Drosophila melanogaster . Neurochem Res 42, 3310–3320 (2017). https://doi.org/10.1007/s11064-017-2373-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2373-y

Keywords

Navigation