Skip to main content

Advertisement

Log in

Assessment of the Target Engagement and d-Serine Biomarker Profiles of the d-Amino Acid Oxidase Inhibitors Sodium Benzoate and PGM030756

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Irregular N-methyl-d-aspartate receptor (NMDAR) function is one of the main hypotheses employed to facilitate understanding of the underlying disease state of schizophrenia. Although direct agonism of the NMDAR has not yielded promising therapeutics, advances have been made by modulating the NMDAR co-agonist site which is activated by glycine and d-serine. One approach to activate the co-agonist site is to increase synaptic d-serine levels through inhibition of d-amino acid oxidase (DAO), the major catabolic clearance pathway for this and other d-amino acids. A number of DAO inhibitors have been developed but most have not entered clinical trials. One exception to this is sodium benzoate which has demonstrated efficacy in small trials of schizophrenia and Alzheimer’s disease. Herein we provide data on the effect of sodium benzoate and an optimised Takeda compound, PGM030756 on ex vivo DAO enzyme occupancy and cerebellar d-serine levels in mice. Both compounds achieve high levels of enzyme occupancy; although lower doses of PGM030756 (1, 3 and 10 mg/kg) were required to achieve this compared to sodium benzoate (300, 1000 mg/kg). Cerebellar d-serine levels were increased by both agents with a delay of approximately 6 h after dosing before the peak effect was achieved. Our data and methods may be useful in understanding the effects of sodium benzoate that have been seen in clinical trials of schizophrenia and Alzheimer’s disease and to support the potential clinical assessment of other DAO inhibitors, such as PGM030756, which demonstrate good enzyme occupancy and d-serine increases following administration of low oral doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Coyle JT (2012) NMDA Receptor and schizophrenia: a brief history. Schizophr Bull 38:920–926

    Article  PubMed  PubMed Central  Google Scholar 

  2. Choi DW, Koh JY, Peters S (1988) Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci 8:185–196

    CAS  PubMed  Google Scholar 

  3. Harvey RJ, Yee BK (2013) Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nat Rev Drug Disc 12:866–885

    Article  CAS  Google Scholar 

  4. Roche press release. http://www.roche.com/media/store/releases/med-cor-2014-01-21.htm

  5. Matsui T, Sekiguchi M, Hashimoto A, Tomita U, Nishikawa T, Wada K (1995) Functional comparison of D-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration. J Neurochem 65:454–458

    Article  CAS  PubMed  Google Scholar 

  6. Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400

    Article  CAS  PubMed  Google Scholar 

  7. Papouin T, Ladépêche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet JP, Oliet SH (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150:633–646

    Article  CAS  PubMed  Google Scholar 

  8. Krebs HA (1935) Metabolism of amino acids: deamination of amino acids. Biochem J 29:1620–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Verall L, Burnett PW, Betts JF, Harrison PJ (2010) The neurobiology of D-amino acid oxidase its involvement in schizophrenia. Mol Psych 15:122–137

    Article  Google Scholar 

  10. Almond SL, Fradley RL, Armstrong EJ, Heavens RB, Rutter AR, Newman RJ, Chiu CS, Konno R, Hutson PH, Brandon NJ (2006) Behavioral and biochemical characterization of a mutant mouse strain lacking D-amino acid oxidase activity and its implications for schizophrenia. Mol Cell Neurosci 32:324–334

    Article  CAS  PubMed  Google Scholar 

  11. Misel ML, Gish RG, Patton H, Mendler M (2013) Sodium benzoate for the treatment of hepatic encephalopathy. Gastroenterol Hepatol 9:219–227

    Google Scholar 

  12. Lane H-Y, Lin C-H, Green MF, Helleman G, Huang C-C, Chen P-W, Tun R, Chang Y-C, Tsai GE (2013) Add on treatment of benzoate for schizophrenia. A randomized, double blind, placebo-controlled trial of D-amino acid oxidase inhibitor. JAMA Psychiatry 70:1267–1275

    Article  CAS  PubMed  Google Scholar 

  13. Lin C-H, Chen P-K, Chang Y-C, Chuo L-J, Chen Y-S, Tsai GE, Lane H-Y (2014) Benzoate, a D-amino acid oxidase inhibitor, for the treatment of early phase Alzheimer’s disease: a randomised, double blind, placebo controlled trial. Biol Psychiatry 75:678–685

    Article  CAS  PubMed  Google Scholar 

  14. See https://clinicaltrials.gov/ct2/show/NCT01908192?term=benzoate&rank=2

  15. Katane M, Matsuda S, Saitoh Y, Sekine M, Furuchi T, Koyama N, Nakagome I, Tomoda H, Hirono S (2013) The antiviral drug Acyclovir is a slow-binding inhibitor of D-amino acid oxidase. Biochemistry 52:5665–5674

    Article  CAS  PubMed  Google Scholar 

  16. Shishikura M, Hakariya H, Iwasa S, Yoshio T, Ichiba H, Yorita K, Fukui K Fukushima T (2014) Evaluation of human D-amino acid oxidase inhibition by antipsychotic drugs in vitro. Biosci Trends 8:149–154

    Article  CAS  PubMed  Google Scholar 

  17. Yagi K, Nagatsu T, Ozawa T (1956) Inhibitory action of chlorpromazine on the oxidation of D-amino acid in the diencephalon part of the brain. Nature 177:891–892

    Article  CAS  PubMed  Google Scholar 

  18. Iwana S, Kawazoe T, Park HK, Tsuchiya K, Ono K, Yorita K, Sakai T, Kusumi T, Fukui K (2008) Chlorpromazine oligomer is potentially active substance that inhibits D-amino acid oxidase, product of susceptibility gene for schizophrenia. J Enz Inh Med Chem 23:901–911

    Article  CAS  Google Scholar 

  19. Sacchi S, Rosini E, Pollegioni L, Molla G (2013) D-Amino acid oxidase inhibitors as a novel class of drugs for schizophrenia therapy. Curr Pharm Des 19:2499–2511

    Article  CAS  PubMed  Google Scholar 

  20. Sparey T, Abeywickrema P, Almond S, Brandon N, Byrne N, Campbell A, Hutson PH, Jacobson M, Jones B, Munshi S, Pascarella D, Pike A, Prasad GS, Sachs N, Sakatis M, Sardana V, Venkatraman S, Young MB (2008) The discovery of fused pyrrole carboxylic acids as novel, potent D-amino acid oxidase (DAO) inhibitors. Bioorg Med Chem Letts 18:3386–3391

    Article  CAS  Google Scholar 

  21. Hopkins SC, Campbell UC, Heffernan ML, Spear KL, Jeggo RD, Spanswick DC, Varney MA, Large TH (2013) Effect of D-amino acid oxidase inhibition on memory performance and long-term potentiation in vivo. Pharmacol Res Pers 1:1–9

    Google Scholar 

  22. Dorsey JM, Heffernan MR, Fang QK, Foglesong RJ, Hopkins SC, Ogbu CO, Soukri M, Spear K Sepracor Inc. (2008) Fused Heterocycles US20080004328

  23. Knezevic NN, Cicmil N, Knezevic I, Candido KD (2015) Discontinued neuropathic pain therapy between 2009–2015. Expert Opin Investig Drugs 24:1631–1646

    Article  CAS  PubMed  Google Scholar 

  24. Farnaby W, Fieldhouse C, Hazel K, Kerr C, Kinsella N, Livermore D, Merchant K, Miller D, Pyridazinone compounds and their use as DAO inhibitors WO2013/027000; WO2014/096757

  25. Hondo T, Warizaya M, Niimi T, Namatame I, Yamaguchi T, Nakanishi K, Hamajima T, Harada K, Sakashita H, Matsumoto Y, Orita M, Takeuchi M (2013) 4-Hydroxypyridazin-3(2H)-one derivatives as novel D-amino acid oxidase inhibitors. J Med Chem 56:3582–3592

    Article  CAS  PubMed  Google Scholar 

  26. Hondo T, Warizaya M, Niimi T, Namatame I, Nakanishi K, Harada K, Dihydroxy aromatic heterocyclic compound WO2013/073577

  27. Kawazoe T, Tsuge H, Pilone MS, Fukui K (2006) Crystal structure of human D-amino acid oxidase: context-dependent variability of the backbone conformation of the VAAGL hydrophobic stretch located at the si-face of the Flavin ring. Protein Sci 15:2708–2717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G (2007) Physiological functions of D-amino acid oxidases: from yeast to humans. Cell Mol Life Sci 64:1373–1394

    Article  CAS  PubMed  Google Scholar 

  29. Sodium benzoate DAO complex PDB ID: 2DU8

  30. Kundu M, Mondal S, Roy A, Martinson JL, Pahan K (2016) Sodium benzoate, a food additive and metabolite of cinnamon, enriches regulatory T-cells via STAT6-mediated upregulation of TGF-β. J Immunol 197(8):3099–3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Modi KK, Jana M, Mondal S, Pahan K (2015) Sodium benzoate, a metabolite of cinnamon and a food additive, upregulates ciliary neurotrophic factor in astrocytes and oligodendrocytes. Neurochem Res 40:2333–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brahmachari S, Pahan K (2007) Sodium benzoate, a food additive and metabolite of cinnamon, modifies T-cells at multiple steps and inhibits adoptive transfer of experimental allergic encephalomyelitis. J Immunol 179:275–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rezaei N, Amirghofran Z, Nikseresht A, Ashjazade N, Zoghi S, Tahvili S, Kamali-Servestani E (2016) In vitro effects of sodium benzoate on Th1/Th2 deviation in patients with multiple sclerosis. Immunol Invest 45:679–691

    Article  CAS  PubMed  Google Scholar 

  34. Brandish PE, Chiu CS, Schneeweis J, Brandon NJ, Leech CL, Kornienko O, Scolnick EM, Strulovici B, Zheng W (2006) A cell-based ultra-high-throughput screening assay for identifying inhibitors of D-amino acid oxidase. J Biomol Screen 11:481–487

    Article  CAS  PubMed  Google Scholar 

  35. Molla G, Sacchi S, Bernasconi M, Pilone MS, Fukui K, Pollegioni L (2006) Characterization of human D-amino acid oxidase. FEBS Lett 580:2358–2364

    Article  CAS  PubMed  Google Scholar 

  36. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307

    Article  CAS  Google Scholar 

  37. Vagin A, Teplyakov A (1997) MOLREP: an automated program for molecular replacement. J Appl Cryst 30:1022–1025

    Article  CAS  Google Scholar 

  38. McRee DE (1999) XtalView/Xfit—A versatile program for manipulating atomic coordinates and electron density. J Struct Biol 125:156–165

    Article  CAS  PubMed  Google Scholar 

  39. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Cryst D 60:2126–2132

    Article  Google Scholar 

  40. Winn MD, Murshudov GN, Papiz MZ (2003) Macromolecular TLS refinement in REFMAC at moderate resolutions. Methods Enzymol 374:300–321

    Article  CAS  PubMed  Google Scholar 

  41. Suven Life Sciences Ltd, Hyderabad, India. Contact: gopi@suven.com

  42. Sumika Chemical Analysis Services, Ltd, Osaka, Japan. Contact: hashimoto@scas.co.jp

  43. Sershen H, Hashim A, Dunlop DS, Suckow RF, Cooper TB, Javitt DC (2016) Modulating NMDA receptor function with D-amino acid oxidase inhibitors: understanding functional activity in PCP-treated mouse model. Neurochem Res 41:398–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Matsuura A, Fujita Y, Iyo M, Hashimoto K (2015) Effects of sodium benzoate on pre-pulse inhibition deficits ad hyperlocomotion in mice after administration of phencyclidine. Acta Neuropsychiatrica 27:159–167

    Article  PubMed  Google Scholar 

  45. Zhu S, Paoletti P (2015) Allosteric modulators of NMDA receptors: multiple sites and mechanisms. Curr Op Pharm 20:14–23

    Article  CAS  Google Scholar 

  46. Yu SY, Wu DC, Liu L, Ge Y, Wang YT (2008) Role of AMPA receptor trafficking in through the δ 2 glutamate receptor. Nat Neurosci 14(5):603–611

    Google Scholar 

  47. Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, Pangalos MN (2014) Lessons learned from the fate of AstraZeneca’s drug pipeline: a five dimensional framework. Nat Rev Drug Discovery 13:419–431

    Article  CAS  PubMed  Google Scholar 

  48. Morgan P, van der Graaf P, Arrowsmith J, Feltner DE, Drummond KS, Wegner CD, Street SD (2012) Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles towards improving phase II survival. Drug Disc Today 17:419–424

    Article  CAS  Google Scholar 

  49. Strick CA, Li C, Scott L, Harvey B, Hajós M, Steyn SJ, Piotrowski MA, James LC, Downs JT, Rago B, Becker SL, El-Kattan A, Xu Y, Ganong AH, Tingley FD III, Ramirez AD, Seymour PA, Guanowsky V, Majchrzak MJ, Fox CB, Schmidt CJ, Duplantier AJ (2011) Modulation of NMDA receptor function by inhibition of D-amino acid oxidase in rodent brain. Neuropharmacology 61:1001–1015

    Article  CAS  PubMed  Google Scholar 

  50. Horiike K, Tojo H, Arai R, Yamano T, Nozaki M, Maeda T (1987) Localisation of D-amino acid oxidase in Bergman glial cells and astrocytes of rat cerebellum. Brain Res Bull 19:587–596

    Article  CAS  PubMed  Google Scholar 

  51. Horiike K, Tojo H, Arai R, Nozaki M, Maeda T (1994) D-Amino acid oxidase is confined to the lower brain stem and cerebellum in rat brain: regional differences in astrocytes. Brain Res 652:297–303

    Article  CAS  PubMed  Google Scholar 

  52. Matsuura A, Fujita Y, Iyo M, Hashimoto K (2015) Effects of sodium benzoate on pre-pulse inhibition deficits and hyperlocomtion in mice after administration of phencyclidine. Acta Neuropsychiatrica 27(3):159–167

    Article  PubMed  Google Scholar 

  53. Rojas C, Alt J, Ator N, Thomas AG, Wu Y, Hin N, Wozniak K, Ferraris D, Rais R, Tsukamoto T, Slusher BS (2016) D-amino-acid oxidase inhibition increases D-serine plasma levels in mouse but not in monkey or dog. Neuropsychopharmacology 41:1610–1619

Download references

Acknowledgements

The authors would like to gratefully thank Sarah Almond, Shyam Bechar, Richard Newman, Kamal Lalgi, Dhruval Patel, Stuart Stafford and John Robinson (Takeda Cambridge Ltd), Sean Gay (Takeda California,) and Ranjev Savopoulos (Assay Advantage Ltd). Whilst not contributing directly to the data presented within this paper each of those named above played important roles in identifying either the compounds synthesised or the methods by which to test them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Fradley.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 117 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howley, E., Bestwick, M., Fradley, R. et al. Assessment of the Target Engagement and d-Serine Biomarker Profiles of the d-Amino Acid Oxidase Inhibitors Sodium Benzoate and PGM030756. Neurochem Res 42, 3279–3288 (2017). https://doi.org/10.1007/s11064-017-2367-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2367-9

Keywords

Navigation