Skip to main content

Advertisement

Log in

Severe Convulsions and Dysmyelination in Both Jimpy and Cx32/47 −/− Mice may Associate Astrocytic L-Channel Function with Myelination and Oligodendrocytic Connexins with Internodal Kv Channels

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The Jimpy mouse illustrates the importance of interactions between astrocytes and oligodendrocytes. It has a mutation in Plp coding for proteolipid protein and DM20. Its behavior is normal at birth but from the age of ~2 weeks it shows severe convulsions associated with oligodendrocyte/myelination deficits and early death. A normally occurring increase in oxygen consumption by highly elevated K+ concentrations is absent in Jimpy brain slices and cultured astrocytes, reflecting that Plp at early embryonic stages affects common precursors as also shown by the ability of conditioned medium from normal astrocytes to counteract histological abnormalities. This metabolic response is now known to reflect opening of L-channels for Ca2+. The resulting deficiency in Ca2+ entry has many consequences, including lack of K+-stimulated glycogenolysis and release of gliotransmitter ATP. Lack of purinergic stimulation compromises oligodendrocyte survival and myelination and affects connexins and K+ channels. Mice lacking the oligodendrocytic connexins Cx32 and 47 show similar neurological dysfunction as Jimpy. This possibly reflects that K+ released by intermodal axonal Kv channels is transported underneath a loosened myelin sheath instead of reaching the extracellular space via connexin-mediated transport to oligodendrocytes, followed by release and astrocytic Na+,K+-ATPase-driven uptake with subsequent Kir4.1-facilitated release and neuronal uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Amaral AI, Meisingset TW, Kotter MR, Sonnewald U (2013) Metabolic aspects of neuron-oligodendrocyte-astrocyte interactions. Front Endocrinol 4:54

    Article  CAS  Google Scholar 

  2. Skoff RP (1976) Myelin deficit in the Jimpy mouse may be due to cellular abnormalities in astroglia. Nature 264:560–562

    Article  CAS  PubMed  Google Scholar 

  3. Hertz L, Chaban G, Hertz E (1980) Abnormal metabolic response to excess potassium in astrocytes from the Jimpy mouse, a convulsing neurological mutant. Brain Res 181:482–487

    Article  CAS  PubMed  Google Scholar 

  4. Chaban YHG (1980) A biochemical and morphological investigation of astrocytes from the Jimpy mouse, a convulsing neurological mutant. University of Saskatchewan, Saskatoon

    Google Scholar 

  5. Hertz L, Chaban G (1982) Indications for an active role of astrocytes in potassium homeostasis at the cellular level: potassium uptake and metabolic effects of potassium. In: Pfeiffer SE (ed) Neuroscience approached through cell culture. CRC Press, Boca Raton, pp 157–174

    Google Scholar 

  6. Nave KA, Lai C, Bloom FE, Milner RJ (1986) Jimpy mutant mouse: a 74-base deletion in the mRNA for myelin proteolipid protein and evidence for a primary defect in RNA splicing. Proc Natl Acad Sci USA 83:9264–9268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Knapp PE, Skoff RP, Redstone DW (1986) Oligodendroglial cell death in jimpy mice: an explanation for the myelin deficit. J Neurosci 6:2813–2822

    CAS  PubMed  Google Scholar 

  8. Knapp PE, Bartlett WP, Williams LA, Yamada M, Ikenaka K, Skoff RP (1999) Programmed cell death without DNA fragmentation in the jimpy mouse: secreted factors can enhance survival. Cell Death Differ 6:136–145

    Article  CAS  PubMed  Google Scholar 

  9. Ghandour MS, Skoff RP (1988) Expression of galactocerebroside in developing normal and jimpy oligodendrocytes in situ. J Neurocytol 17:485–498

    Article  CAS  PubMed  Google Scholar 

  10. Phillips RJ (1954) Jimpy, a new totally sexlinked gene in the house mouse. Z Indukt Abstamm Vererb 86:322–326

    CAS  Google Scholar 

  11. Sidman RL, Appel SH, Fullier JF (1965) Neurological mutants of the mouse. Science 150:513–516

    Article  CAS  PubMed  Google Scholar 

  12. Kurihara T, Nussbaum JL, Mandel P (1969) 2′,3′-cyclic nucleotide 3′-phosphohydrolase in the brain of the “Jimpy” mouse, a mutant with deficient myelination. Brain Res 13:401–403

    Article  CAS  PubMed  Google Scholar 

  13. Zahnd JP, Bonaventure N (1969) Donnees ultrastructurales et ectrophysiologiques obtenues au niveau du systeme nerveux central chez la souris Jimpy. C R Soc Biol 163:1631–1635

  14. Herschkowitz N, Vassella F, Bischoff A (1971) Myelin differences in the central and peripheral nervous system in the ‘Jimpy’ mouse. J Neurochem 18:1361–1363

    Article  CAS  PubMed  Google Scholar 

  15. Wolf MK, Holden AB (1969) Tissue culture analysis of the inherited defect of central nervous system myelination in jimpy mice. J Neuropathol Exp Neurol 28:214–228

    Article  Google Scholar 

  16. Foran DR, Peterson AC (1992) Myelin acquisition in the central nervous system of the mouse revealed by an MBP-Lac Z transgene. J Neurosci 12:4890–4897

    CAS  PubMed  Google Scholar 

  17. Torii J, Adachi M, Volk BW (1971) Histochemical and ultrastructural studies of inherited leukodystrophy in mice. J Neuropathol Exp Neurol 30:278–289

    Article  CAS  PubMed  Google Scholar 

  18. Farkas-Bargeton E, Robain O, Mandel P (1972) Abnormal glial maturation in the white matter in Jimpy mice. An optical study. Acta Neuropathol 21:272–281

    Article  CAS  PubMed  Google Scholar 

  19. Meier C, Herschkowitz N, Bischoff A (1974) Morphological and biochemical observations in the Jimpy spinal cord. Acta Neuropathol 27:349–362

    Article  CAS  PubMed  Google Scholar 

  20. Robain O, Mandel P (1974) Quantitative study of myelination and axonal growth in corpus callosum and posterior columns of spinal cord in the Jimpy mouse. Acta Neuropathol 29:293–309

    Article  CAS  PubMed  Google Scholar 

  21. Best TT, Skoff RP, Bartlett WP (1988) Astroglial plasticity in hemizygous and heterozygous jimpy mice. Int J Dev Neurosci 6:39–57

    Article  CAS  PubMed  Google Scholar 

  22. Hovhannisyan A, Benkner B, Biesemeier A, Schraermeyer U, Kukley M, Munch TA (2015) Effects of the jimpy mutation on mouse retinal structure and function. J Comp Neurol 523:2788–2806

    Article  CAS  PubMed  Google Scholar 

  23. Meier C, Bischoff A (1975) Oligodendroglial cell development in jimpy mice and controls: an electron-microscopic study in the optic nerve. J Neurol Sci 26:517–528

    Article  CAS  PubMed  Google Scholar 

  24. Omlin FX, Anders JJ (1983) Abnormal cell relationships in Jimpy mice: electron microscopic and immunocytochemical findings. J Neurocytol 12:767–784

    Article  CAS  PubMed  Google Scholar 

  25. Baracskay KL, Duchala CS, Miller RH, Macklin WB, Trapp BD (2002) Oligodendrogenesis is differentially regulated in gray and white matter of jimpy mice. J Neurosci Res 70:645–654

    Article  CAS  PubMed  Google Scholar 

  26. Verkhratsky A, Butt AM (2013) Glial Physiology and Pathophysiology. Wiley-Blackwell, Hoboken

    Book  Google Scholar 

  27. Cerina M, Narayanan V, Gobel K, Bittner S, Ruck T, Meuth P, Herrmann AM, Stangel M, Gudi V, Skripuletz T, Daldrup T, Wiendl H, Seidenbecher T, Ehling P, Kleinschnitz C, Pape HC, Budde T, Meuth SG (2016) The quality of cortical network function recovery depends on localization and degree of axonal demyelination. Brain Behav Immun 59:103–117

    Article  PubMed  CAS  Google Scholar 

  28. Boison D, Stoffel W (1994) Disruption of the compacted myelin sheath of axons of the central nervous system in proteolipid protein-deficient mice. Proc Natl Acad Sci USA 91:11709–11713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boison D, Bussow H, D’Urso D, Muller HW, Stoffel W (1995) Adhesive properties of proteolipid protein are responsible for the compaction of CNS myelin sheaths. J Neurosci 15:5502–5513

    CAS  PubMed  Google Scholar 

  30. Klugmann M, Schwab MH, Puhlhofer A, Schneider A, Zimmermann F, Griffiths IR, Nave KA (1997) Assembly of CNS myelin in the absence of proteolipid protein. Neuron 18:59–70

    Article  CAS  PubMed  Google Scholar 

  31. Garbern JY, Yool DA, Moore GJ, Wilds IB, Faulk MW, Klugmann M, Nave KA, Sistermans EA, van der Knaap MS, Bird TD, Shy ME, Kamholz JA, Griffiths IR (2002) Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent axonal degeneration in the absence of demyelination and inflammation. Brain 125:551–561

    Article  PubMed  Google Scholar 

  32. Yool DA, Edgar JM, Montague P, Malcolm S (2000) The proteolipid protein gene and myelin disorders in man and animal models. Hum Mol Genet 9:987–992

    Article  CAS  PubMed  Google Scholar 

  33. Yin X, Kidd GJ, Ohno N, Perkins GA, Ellisman MH, Bastian C, Brunet S, Baltan S, Trapp BD (2016) Proteolipid protein-deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling. J Cell Biol 215:531–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Michalski JP, Anderson C, Beauvais A, De Repentigny Y, Kothary R (2011) The proteolipid protein promoter drives expression outside of the oligodendrocyte lineage during embryonic and early postnatal development. PLoS One 6:e19772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Harlow DE, Saul KE, Culp CM, Vesely EM, Macklin WB (2014) Expression of proteolipid protein gene in spinal cord stem cells and early oligodendrocyte progenitor cells is dispensable for normal cell migration and myelination. J Neurosci 34:1333–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamada M, Ivanova A, Yamaguchi Y, Lees MB, Ikenaka K (1999) Proteolipid protein gene product can be secreted and exhibit biological activity during early development. J Neurosci 19:2143–2151

    CAS  PubMed  Google Scholar 

  37. Yool DA, Klugmann M, McLaughlin M, Vouyiouklis DA, Dimou L, Barrie JA, McCulloch MC, Nave KA, Griffiths IR (2001) Myelin proteolipid proteins promote the interaction of oligodendrocytes and axons. J Neurosci Res 63:151–164

    Article  CAS  PubMed  Google Scholar 

  38. Vela JM, Gonzalez B, Castellano B (1998) Understanding glial abnormalities associated with myelin deficiency in the jimpy mutant mouse. Brain Res Brain Res Rev 26:29–42

    Article  CAS  PubMed  Google Scholar 

  39. Ikeda M, Hossain MI, Zhou L, Horie M, Ikenaka K, Horii A, Takebayashi H (2016) Histological detection of dynamic glial responses in the dysmyelinating Tabby-jimpy mutant brain. Anat Sci Int 637:26–30

    Google Scholar 

  40. Appikatla S, Bessert D, Lee I, Huttemann M, Mullins C, Somayajulu-Nitu M, Yao F, Skoff RP (2014) Insertion of proteolipid protein into oligodendrocyte mitochondria regulates extracellular pH and adenosine triphosphate. Glia 62:356–373

    Article  PubMed  Google Scholar 

  41. Karim SA, Barrie JA, McCulloch MC, Montague P, Edgar JM, Kirkham D, Anderson TJ, Nave KA, Griffiths IR, McLaughlin M (2007) PLP overexpression perturbs myelin protein composition and myelination in a mouse model of Pelizaeus-Merzbacher disease. Glia 55:341–351

    Article  PubMed  Google Scholar 

  42. Huttemann M, Zhang Z, Mullins C, Bessert D, Lee I, Nave KA, Appikatla S, Skoff RP (2009) Different proteolipid protein mutants exhibit unique metabolic defects. ASN Neuro 1

  43. Bartlett WP, Knapp PE, Skoff RP (1988) Glial conditioned medium enables jimpy oligodendrocytes to express properties of normal oligodendrocytes: production of myelin antigens and membranes. Glia 1:253–259

    Article  CAS  PubMed  Google Scholar 

  44. Knapp PE, Benjamins JA, Skoff RP (1996) Epigenetic factors up-regulate expression of myelin proteins in the dysmyelinating jimpy mutant mouse. J Neurobiol 29:138–150

    Article  CAS  PubMed  Google Scholar 

  45. Knapp PE, Ismaili S, Hauser KF, Ghandour MS (1999) Abnormal Ca(2+) regulation in oligodendrocytes from the dysmyelinating jimpy mouse. Brain Res 847:332–337

    Article  CAS  PubMed  Google Scholar 

  46. Sorg BJ, Agrawal D, Agrawal HC, Campagnoni AT (1986) Expression of myelin proteolipid protein and basic protein in normal and dysmyelinating mutant mice. J Neurochem 46:379–387

    Article  CAS  PubMed  Google Scholar 

  47. Duncan ID, Hammang JP, Goda S, Quarles RH (1989) Myelination in the jimpy mouse in the absence of proteolipid protein. Glia 2:148–154

    Article  CAS  PubMed  Google Scholar 

  48. Williams WC 2nd, Gard AL (1997) In vitro death of jimpy oligodendrocytes: correlation with onset of DM-20/PLP expression and resistance to oligodendrogliotrophic factors. J Neurosci Res 50:177–189

    Article  CAS  PubMed  Google Scholar 

  49. Keen P, Osborne RH, Pehrson UM (1976) Proceedings: respiration and metabolic compartmentation in brain slices from a glia-deficient mutant, the Jimpy mouse. J Physiol 254:22P–23P

    CAS  PubMed  Google Scholar 

  50. Hertz l, Juurlink BHJ, Fosmark H, Schousboe A (1982) Methodological appendix: Astrocytes in primary cultures. In: Pfeiffer SE (ed) Neuroscience approached through cell culture. CRC Press, Boca Raton, pp 175–186

    Google Scholar 

  51. Juurlink BHJ, Hertz L (1992) Astrocytes. In: Boulton AA, Baker GB, Walz W (eds) Neuromethods in cell cultures, also available on the Internet in Springer’s Protocols edn. Humana Clifton, New York, pp 269–321

    Google Scholar 

  52. Hertz L, Chen Y, Song D (2016) Astrocyte cultures mimicking brain astrocytes in gene expression, signaling, metabolism and K+ uptake and showing astrocytic gene expression overlooked by immunohistochemistry and in situ hybridization. Neurochem Res. doi: 10.1007/s11064-016-1828-x

    Google Scholar 

  53. Ghandour MS, Feutz AC, Jalabi W, Taleb O, Bessert D, Cypher M, Carlock L, Skoff RP (2002) Trafficking of PLP/DM20 and cAMP signaling in immortalized jimpy oligodendrocytes. Glia 40:300–311

    Article  PubMed  Google Scholar 

  54. Hertz E, Hertz L (1979) Polarographic measurement of oxygen uptake by astrocytes in primary cultures using the tissue-culture flask as the respirometer chamber. In Vitro 15:429–436

    Article  CAS  PubMed  Google Scholar 

  55. Hertz L, Schou M (1962) Univalent cations and the respiration of brain-cortex slices. Biochem J 85:93–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Weiss GB, Hertz L, Goodman FR (1972) Drug-induced alterations in respiration of rat brain cortex and striatum slices in a carbon dioxide-bicarbonate-buffered medium. Biochem Pharmacol 21:625–634

    Article  CAS  PubMed  Google Scholar 

  57. Falconer DS (1953) Total sex-linkage in the house mouse. Z Indukt Abstamm Vererb 85:210–219

    CAS  Google Scholar 

  58. Bachelard H, Morris P, Taylor A, Thatcher N (1995) High-field MRS studies in brain slices. Magn Reson Imaging 13:1223–1226

    Article  CAS  PubMed  Google Scholar 

  59. Xu J, Song D, Xue Z, Gu L, Hertz L, Peng L (2013) Requirement of glycogenolysis for uptake of increased extracellular K+ in astrocytes: potential implications for K+ homeostasis and glycogen usage in brain. Neurochem Res 38:472–485

    Article  CAS  PubMed  Google Scholar 

  60. Hertz L, Chen Y (2016) Importance of astrocytes for potassium ion (K+) homeostasis in brain and glial effects of K+ and its transporters on learning. Neurosci Biobehav Rev 71:484–505

    Article  CAS  PubMed  Google Scholar 

  61. Epstein FH, Silva P (1985) Na–K–Cl cotransport in chloride-transporting epithelia. Ann NY Acad Sci 456:187–197

    Article  CAS  PubMed  Google Scholar 

  62. Dawson DC (1987) Cellular mechanisms for K transport across epithelial cell layers. Semin Nephrol 7:185–192

    CAS  PubMed  Google Scholar 

  63. Hamann S, Herrera-Perez JJ, Zeuthen T, Alvarez-Leefmans FJ (2010) Cotransport of water by the Na+–K+–2Cl(−) cotransporter NKCC1 in mammalian epithelial cells. J Physiol 588:4089–4101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Macaulay N, Zeuthen T (2012) Glial K(+) clearance and cell swelling: key roles for cotransporters and pumps. Neurochem Res 37:2299–2309

    Article  CAS  PubMed  Google Scholar 

  65. Akar F, Skinner E, Klein JD, Jena M, Paul RJ, O’Neill WC (1999) Vasoconstrictors and nitrovasodilators reciprocally regulate the Na+–K+–2Cl− cotransporter in rat aorta. Am J Physiol 276:C1383–C1390

    CAS  PubMed  Google Scholar 

  66. Qusous A, Geewan CS, Greenwell P, Kerrigan MJ (2011) siRNA-mediated inhibition of Na(+)–K(+)–2Cl− cotransporter (NKCC1) and regulatory volume increase in the chondrocyte cell line C-20/A4. J Membr Biol 243:25–34

    Article  CAS  PubMed  Google Scholar 

  67. Pedersen SF, O’Donnell ME, Anderson SE, Cala PM (2006) Physiology and pathophysiology of Na+/H + exchange and Na+–-K+–2Cl− cotransport in the heart, brain, and blood. Am J Physiol Regul Integr Comp Physiol 291:R1–R25

    Article  CAS  PubMed  Google Scholar 

  68. Hoffmann EK, Schettino T, Marshall WS (2007) The role of volume-sensitive ion transport systems in regulation of epithelial transport. Comp Biochem Physiol A 148:29–43

    Article  CAS  Google Scholar 

  69. Sid B, Miranda L, Vertommen D, Viollet B, Rider MH (2010) Stimulation of human and mouse erythrocyte Na(+)-K(+)-2Cl(-) cotransport by osmotic shrinkage does not involve AMP-activated protein kinase, but is associated with STE20/SPS1-related proline/alanine-rich kinase activation. J Physiol 588:2315–2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Song D, Xu J, Hertz L, Peng L (2015) Regulatory volume increase in astrocytes exposed to hypertonic medium requires beta1 -adrenergic Na(+)/K(+)–ATPase stimulation and glycogenolysis. J Neurosci Res 93:130–139

    Article  CAS  PubMed  Google Scholar 

  71. Hertz L, Schousboe A, Boechler N, Mukerji S, Fedoroff S (1978) Kinetic characteristics of the glutamate uptake into normal astrocytes in cultures. Neurochem Res 3:1–14

    Article  CAS  PubMed  Google Scholar 

  72. Judd MG, Nagaraja TN, Brookes N (1996) Potassium-induced stimulation of glutamate uptake in mouse cerebral astrocytes: the role of intracellular pH. J Neurochem 66:169–176

    Article  CAS  PubMed  Google Scholar 

  73. Ransom CB, Ransom BR, Sontheimer H (2000) Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. J Physiol 522(Pt 3):427–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Somjen GG, Kager H, Wadman WJ (2008) Computer simulations of neuron-glia interactions mediated by ion flux. J Comput Neurosci 25:349–365

    Article  CAS  PubMed  Google Scholar 

  75. Dufour S, Dufour P, Chever O, Vallee R, Amzica F (2011) In vivo simultaneous intra- and extracellular potassium recordings using a micro-optrode. J Neurosci Methods 194:206–217

    Article  CAS  PubMed  Google Scholar 

  76. Bay V, Butt AM (2012) Relationship between glial potassium regulation and axon excitability: a role for glial Kir4.1 channels. Glia 60:651–660

    Article  PubMed  Google Scholar 

  77. Larsen BR, Assentoft M, Cotrina ML, Hua SZ, Nedergaard M, Kaila K, Voipio J, MacAulay N (2014) Contributions of the Na(+)/K(+)-ATPase, NKCC1, and Kir4.1 to hippocampal K(+) clearance and volume responses. Glia 62:608–622

    Article  PubMed  PubMed Central  Google Scholar 

  78. Larsen BR, Stoica A, MacAulay N (2016) managing brain extracellular K(+) during neuronal activity: the physiological role of the Na(+)/K(+)-ATPase subunit isoforms. Front Physiol 7:141

    Article  PubMed  PubMed Central  Google Scholar 

  79. Larsen BR, MacAulay N (2014) Kir4.1-mediated spatial buffering of K(+): experimental challenges in determination of its temporal and quantitative contribution to K(+) clearance in the brain. Channels 8:544–550

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hertz L, Gerkau NJ, Xu J, Durry S, Song D, Rose CR, Peng L (2015) Roles of astrocytic Na(+),K(+)-ATPase and glycogenolysis for K(+) homeostasis in mammalian brain. J Neurosci Res 93:1019–1030

    Article  CAS  PubMed  Google Scholar 

  81. Ashford CA, Dixon KC (1935) The effect of potassium on the glucolysis of brain tissue with reference to the Pasteur effect. Biochem J 29:157–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Walz W, Mukerji S (1988) Lactate release from cultured astrocytes and neurons: a comparison. Glia 1:366–370

    Article  CAS  PubMed  Google Scholar 

  83. Lund-Andersen H, Hertz L (1970) Effects of potassium content in brain-cortex slices from adult rats. Exp Brain Res 11:199–212

    Article  CAS  PubMed  Google Scholar 

  84. Jayakumar AR, Liu M, Moriyama M, Ramakrishnan R, Forbush B 3rd, Reddy PV, Norenberg MD (2008) Na-K-Cl Cotransporter-1 in the mechanism of ammonia-induced astrocyte swelling. J Biol Chem 283:33874–33882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang H, Yan Y, Kintner DB, Lytle C, Sun D (2003) GABA-mediated trophic effect on oligodendrocytes requires Na-K-2Cl cotransport activity. J Neurophysiol 90:1257–1265

    Article  CAS  PubMed  Google Scholar 

  86. Chen H, Kintner DB, Jones M, Matsuda T, Baba A, Kiedrowski L, Sun D (2007) AMPA-mediated excitotoxicity in oligodendrocytes: role for Na(+)–K(+)–Cl(−) co-transport and reversal of Na(+)/Ca(2+) exchanger. J Neurochem 102:1783–1795

    Article  CAS  PubMed  Google Scholar 

  87. Fu P, Tang R, Yu Z, Huang S, Xie M, Luo X, Wang W (2015) Bumetanide-induced NKCC1 inhibition attenuates oxygen-glucose deprivation-induced decrease in proliferative activity and cell cycle progression arrest in cultured OPCs via p-38 MAPKs. Brain Res 1613:110–119

    Article  CAS  PubMed  Google Scholar 

  88. Kanaka C, Ohno K, Okabe A, Kuriyama K, Itoh T, Fukuda A, Sato K (2001) The differential expression patterns of messenger RNAs encoding K-Cl cotransporters (KCC1,2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system. Neuroscience 104:933–946

    Article  CAS  PubMed  Google Scholar 

  89. MacVicar BA, Feighan D, Brown A, Ransom B (2002) Intrinsic optical signals in the rat optic nerve: role for K(+) uptake via NKCC1 and swelling of astrocytes. Glia 37:114–123

    Article  PubMed  Google Scholar 

  90. Price TJ, Hargreaves KM, Cervero F (2006) Protein expression and mRNA cellular distribution of the NKCC1 cotransporter in the dorsal root and trigeminal ganglia of the rat. Brain Res 1112:146–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hertz L, Peng L, Kjeldsen CC, O’Dowd BS, Dienel GA (2004) Ion, transmitter and drug effects on energy metabolism in astrocytes. In: Hertz L (ed) Non-neuronal cells of the nervous system: function and dysfunction. Elsevier, Amsterdam, pp 435–460

    Google Scholar 

  92. Holtzman D, Olson J, Zamvil S, Nguyen H (1982) Maturation of potassium-stimulated respiration in rat cerebral cortical slices. J Neurochem 39:274–276

    Article  CAS  PubMed  Google Scholar 

  93. Hertz L (1966) Neuroglial localization of potassium and sodium effects on respiration in brain. J Neurochem 13:1373–1387

    Article  CAS  PubMed  Google Scholar 

  94. Hertz L, Dittmann L, Mandel P (1973) K+ induced stimulation of oxygen uptake in cultured cerebral glial cells. Brain Res 60:517–520

    Article  CAS  PubMed  Google Scholar 

  95. Carmignoto G, Pasti L, Pozzan T (1998) On the role of voltage-dependent calcium channels in calcium signaling of astrocytes in situ. J Neurosci 18:4637–4645

    CAS  PubMed  Google Scholar 

  96. Kostyuk PG (1984) Metabolic control of ionic channels in the neuronal membrane. Neuroscience 13:983–989

    Article  CAS  PubMed  Google Scholar 

  97. Newman EA (1985) Voltage-dependent calcium and potassium channels in retinal glial cells. Nature 317:809–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Duffy S, MacVicar BA (1994) Potassium-dependent calcium influx in acutely isolated hippocampal astrocytes. Neuroscience 61:51–61

    Article  CAS  PubMed  Google Scholar 

  99. Yan E, Li B, Gu L, Hertz L, Peng L (2013) Mechanisms for L-channel-mediated increase in [Ca(2+)]i and its reduction by anti-bipolar drugs in cultured astrocytes combined with its mRNA expression in freshly isolated cells support the importance of astrocytic L-channels. Cell Calcium 54:335–342

    Article  CAS  PubMed  Google Scholar 

  100. Du T, Liang C, Li B, Hertz L, Peng L (2014) Chronic fluoxetine administration increases expression of the L-channel gene Cav1.2 in astrocytes from the brain of treated mice and in culture and augments K(+)-induced increase in [Ca(2+)]i. Cell Calcium 55:166–174

    Article  CAS  PubMed  Google Scholar 

  101. Hertz L, Bender AS, Woodbury DM, White HS (1989) Potassium-stimulated calcium uptake in astrocytes and its potent inhibition by nimodipine. J Neurosci Res 22:209–215

    Article  CAS  PubMed  Google Scholar 

  102. Luttrell LM, Daaka Y, Lefkowitz RJ (1999) Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol 11:177–183

    Article  CAS  PubMed  Google Scholar 

  103. Peng L, Du T, Xu J, Song D, Li B, Zhang M, Hertz L (2012) Adrenergic and V1-ergic agonists/antagonists affecting recovery from brain trauma in the Lund project act on astrocytes. Curr Signal Transduct Ther 7:43–55

    Article  CAS  Google Scholar 

  104. Lin HH (2013) G-protein-coupled receptors and their (Bio) chemical significance win 2012 Nobel Prize in Chemistry. Biomed J 36:118–124

    Article  PubMed  Google Scholar 

  105. Peng L (2004) Transactivation in astrocytes as a nivel mnechansm of neuroprotection. In: Hertz L (ed) Non-neuronal cells of the nervous system: function and dysfunction. Elsevier, Amsterdam, pp 503–518

    Google Scholar 

  106. Cai L, Du T, Song D, Li B, Hertz L, Peng L (2011) Astrocyte ERK phosphorylation precedes K(+)-induced swelling but follows hypotonicity-induced swelling. Neuropathology 31:250–264

    Article  PubMed  Google Scholar 

  107. Hertz L, Peng L, Song D (2015) Ammonia, like K(+), stimulates the Na(+), K(+), 2 Cl(−) cotransporter NKCC1 and the Na(+),K(+)-ATPase and interacts with endogenous ouabain in astrocytes. Neurochem Res 40:241–257

    Article  CAS  PubMed  Google Scholar 

  108. Xu J, Song D, Bai Q, Cai L, Hertz L, Peng L (2014) Basic mechanism leading to stimulation of glycogenolysis by isoproterenol, EGF, elevated extracellular K+ concentrations, or GABA. Neurochem Res 39:661–667

    Article  CAS  PubMed  Google Scholar 

  109. Hertz L, Xu J, Song D, Du T, Li B, Yan E, Peng L (2015) Astrocytic glycogenolysis: mechanisms and functions. Metab Brain Dis 30:317–333

    Article  CAS  PubMed  Google Scholar 

  110. Hertz L, Chen Y (2016) Editorial: all 3 types of glial cells are important for memory formation. Front Integr Neurosci 10:31

    Article  PubMed  PubMed Central  Google Scholar 

  111. Gibbs ME, Lloyd HG, Santa T, Hertz L (2007) Glycogen is a preferred glutamate precursor during learning in 1-day-old chick: biochemical and behavioral evidence. J Neurosci Res 85:3326–3333

    Article  CAS  PubMed  Google Scholar 

  112. Muller MS, Fox R, Schousboe A, Waagepetersen HS, Bak LK (2014) Astrocyte glycogenolysis is triggered by store-operated calcium entry and provides metabolic energy for cellular calcium homeostasis. Glia 62:526–534

    Article  PubMed  Google Scholar 

  113. Obel LF, Muller MS, Walls AB, Sickmann HM, Bak LK, Waagepetersen HS, Schousboe A (2012) Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front Neuroenerg 4:3

    Article  CAS  Google Scholar 

  114. Xu J, Song D, Bai Q, Zhou L, Cai L, Hertz L, Peng L (2014) Role of glycogenolysis in stimulation of ATP release from cultured mouse astrocytes by transmitters and high K + concentrations. ASN Neuro 6:e00132

    PubMed  PubMed Central  Google Scholar 

  115. Hertz L, Xu J, Peng L (2014) Glycogenolysis and purinergic signaling. Adv Neurobiol 11:31–54

    Article  PubMed  Google Scholar 

  116. Heinrich A, Ando RD, Turi G, Rozsa B, Sperlagh B (2012) K + depolarization evokes ATP, adenosine and glutamate release from glia in rat hippocampus: a microelectrode biosensor study. Br J Pharmacol 167:1003–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tang F, Lane S, Korsak A, Paton JF, Gourine AV, Kasparov S, Teschemacher AG (2014) Lactate-mediated glia-neuronal signalling in the mammalian brain. Nat Commun 5:3284

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Steinman MQ, Gao V, Alberini CM (2016) The role of lactate-mediated metabolic coupling between astrocytes and neurons in long-term memory formation. Front Integr Neurosci 10:10

    Article  PubMed  PubMed Central  Google Scholar 

  119. Morland C, Lauritzen KH, Puchades M, Holm-Hansen S, Andersson K, Gjedde A, Attramadal H, Storm-Mathisen J, Bergersen LH (2015) The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: expression and action in brain. J Neurosci Res 93:1045–1055

    Article  CAS  PubMed  Google Scholar 

  120. Ransom BR, Yamate CL, Connors BW (1985) Activity-dependent shrinkage of extracellular space in rat optic nerve: a developmental study. J Neurosci 5:532–535

    CAS  PubMed  Google Scholar 

  121. Wang F, Du T, Liang C, Verkhratsky A, Peng L (2015) Ammonium increases Ca(2+) signalling and upregulates expression of Cav1.2 gene in astrocytes in primary cultures and in the in vivo brain. Acta Physiol 214:261–274

    Article  CAS  Google Scholar 

  122. Hamilton N, Hubbard PS, Butt AM (2009) Effects of glutamate receptor activation on NG2-glia in the rat optic nerve. J Anat 214:208–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hamilton N, Vayro S, Kirchhoff F, Verkhratsky A, Robbins J, Gorecki DC, Butt AM (2008) Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes. Glia 56:734–749

    Article  PubMed  Google Scholar 

  124. Fields RD (2006) Nerve impulses regulate myelination through purinergic signalling. Nos Found Symp 276:148–158; discussion 158–161, 233–147, 275–181

    Article  Google Scholar 

  125. Butt AM (2011) ATP: a ubiquitous gliotransmitter integrating neuron-glial networks. Semin Cell Dev Biol 22:205–213

    Article  CAS  PubMed  Google Scholar 

  126. Butt AM, Fern RF, Matute C (2014) Neurotransmitter signaling in white matter. Glia 62:1762–1779

    Article  PubMed  Google Scholar 

  127. Rivera A, Vanzulli I, Butt AM (2016) A central role for ATP signaling in glial interactions in the CNS. Curr Drug Targets

  128. Xia M, Zhu Y (2011) Signaling pathways of ATP-induced PGE2 release in spinal cord astrocytes are EGFR transactivation-dependent. Glia 59:664–674

    Article  PubMed  Google Scholar 

  129. Milenkovic I, Weick M, Wiedemann P, Reichenbach A, Bringmann A (2003) P2Y receptor-mediated stimulation of Muller glial cell DNA synthesis: dependence on EGF and PDGF receptor transactivation. Invest Ophthalmol Vis Sci 44:1211–1220

    Article  PubMed  Google Scholar 

  130. Vinukonda G, Hu F, Mehdizadeh R, Dohare P, Kidwai A, Juneja A, Naran V, Kierstead M, Chawla R, Kayton R, Ballabh P (2016) Epidermal growth factor preserves myelin and promotes astrogliosis after intraventricular hemorrhage. Glia 64:1987–2004

    Article  PubMed  Google Scholar 

  131. Gonsalvez D, Ferner AH, Peckham H, Murray SS, Xiao J (2016) The roles of extracellular related-kinases 1 and 2 signaling in CNS myelination. Neuropharmacology 110:586–593

    Article  CAS  PubMed  Google Scholar 

  132. Ansari KA, Shoeman DW (1990) Arachidonic and docosahexanoic acid content of bovine brain myelin: implications for the pathogenesis of multiple sclerosis. Neurochem Res 15:7–11

    Article  CAS  PubMed  Google Scholar 

  133. Tian N, Kanno T, Jin Y, Nishizaki T (2014) Lithium potentiates GSK-3beta activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation. Biochem Biophys Res Commun 450:746–749

    Article  CAS  PubMed  Google Scholar 

  134. Azim K, Butt AM (2011) GSK3beta negatively regulates oligodendrocyte differentiation and myelination in vivo. Glia 59:540–553

    Article  PubMed  Google Scholar 

  135. Luo F, Burke K, Kantor C, Miller RH, Yang Y (2014) Cyclin-dependent kinase 5 mediates adult OPC maturation and myelin repair through modulation of Akt and GsK-3beta signaling. J Neurosci 34:10415–10429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Plenge P, Mellerup ET, Rafaelsen OJ (1970) Lithium action on glycogen synthesis in rat brain, liver, and diaphragm. J Psychiatr Res 8:29–36

    Article  CAS  PubMed  Google Scholar 

  137. Takahashi-Yanaga F (2013) Activator or inhibitor? GSK-3 as a new drug target. Biochem Pharmacol 86:191–199

    Article  CAS  PubMed  Google Scholar 

  138. Cambron M, D’Haeseleer M, Laureys G, Clinckers R, Debruyne J, De Keyser J (2012) White-matter astrocytes, axonal energy metabolism, and axonal degeneration in multiple sclerosis. J Cereb Blood Flow Metab 32:413–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, Stewart CL, Fields RD (2006) Astrocytes promote myelination in response to electrical impulses. Neuron 49:823–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yamakuni H, Kawaguchi N, Ohtani Y, Nakamura J, Katayama T, Nakagawa T, Minami M, Satoh M (2002) ATP induces leukemia inhibitory factor mRNA in cultured rat astrocytes. J Neuroimmunol 129:43–50

    Article  CAS  PubMed  Google Scholar 

  141. Spiegel I, Peles E (2006) A new player in CNS myelination. Neuron 49:777–778

    Article  CAS  PubMed  Google Scholar 

  142. Iacobas S, Iacobas DA (2010) Astrocyte proximity modulates the myelination gene fabric of oligodendrocytes. Neuron Glia Biol 6:157–169

    Article  PubMed  Google Scholar 

  143. Ishibashi T, Lee PR, Baba H, Fields RD (2009) Leukemia inhibitory factor regulates the timing of oligodendrocyte development and myelination in the postnatal optic nerve. J Neurosci Res 87:3343–3355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gresle MM, Butzkueven H, Perreau VM, Jonas A, Xiao J, Thiem S, Holmes FE, Doherty W, Soo PY, Binder MD, Akkermann R, Jokubaitis VG, Cate HS, Marriott MP, Gundlach AL, Wynick D, Kilpatrick TJ (2015) Galanin is an autocrine myelin and oligodendrocyte trophic signal induced by leukemia inhibitory factor. Glia 63:1005–1020

    Article  PubMed  Google Scholar 

  145. Rajasingh J, Bord E, Hamada H, Lambers E, Qin G, Losordo DW, Kishore R (2007) STAT3-dependent mouse embryonic stem cell differentiation into cardiomyocytes: analysis of molecular signaling and therapeutic efficacy of cardiomyocyte precommitted mES transplantation in a mouse model of myocardial infarction. Circ Res 101:910–918

    Article  CAS  PubMed  Google Scholar 

  146. Menichella DM, Goodenough DA, Sirkowski E, Scherer SS, Paul DL (2003) Connexins are critical for normal myelination in the CNS. J Neurosci 23:5963–5973

    CAS  PubMed  Google Scholar 

  147. Odermatt B, Wellershaus K, Wallraff A, Seifert G, Degen J, Euwens C, Fuss B, Bussow H, Schilling K, Steinhauser C, Willecke K (2003) Connexin 47 (Cx47)-deficient mice with enhanced green fluorescent protein reporter gene reveal predominant oligodendrocytic expression of Cx47 and display vacuolized myelin in the CNS. J Neurosci 23:4549–4559

    CAS  PubMed  Google Scholar 

  148. Menichella DM, Majdan M, Awatramani R, Goodenough DA, Sirkowski E, Scherer SS, Paul DL (2006) Genetic and physiological evidence that oligodendrocyte gap junctions contribute to spatial buffering of potassium released during neuronal activity. J Neurosci 26:10984–10991

    Article  CAS  PubMed  Google Scholar 

  149. Schiza N, Sargiannidou I, Kagiava A, Karaiskos C, Nearchou M, Kleopa KA (2015) Transgenic replacement of Cx32 in gap junction-deficient oligodendrocytes rescues the phenotype of a hypomyelinating leukodystrophy model. Hum Mol Genet 24:2049–2064

    Article  CAS  PubMed  Google Scholar 

  150. Neusch C, Rozengurt N, Jacobs RE, Lester HA, Kofuji P (2001) Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J Neurosci 21:5429–5438

    CAS  PubMed  Google Scholar 

  151. Massa PT, Mugnaini E (1985) Cell-cell junctional interactions and characteristic plasma membrane features of cultured rat glial cells. Neuroscience 14:695–709

    Article  CAS  PubMed  Google Scholar 

  152. Massa PT, Mugnaini E (1982) Cell junctions and intramembrane particles of astrocytes and oligodendrocytes: a freeze-fracture study. Neuroscience 7:523–538

    Article  CAS  PubMed  Google Scholar 

  153. Rash JE, Yasumura T, Dudek FE, Nagy JI (2001) Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons. J Neurosci 21:1983–2000

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Maglione M, Tress O, Haas B, Karram K, Trotter J, Willecke K, Kettenmann H (2010) Oligodendrocytes in mouse corpus callosum are coupled via gap junction channels formed by connexin47 and connexin32. Glia 58:1104–1117

    Article  PubMed  Google Scholar 

  155. Wasseff SK, Scherer SS (2011) Cx32 and Cx47 mediate oligodendrocyte:astrocyte and oligodendrocyte:oligodendrocyte gap junction coupling. Neurobiol Dis 42:506–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Giaume C, Leybaert L, Naus CC, Saez JC (2013) Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles. Front Pharmacol 4:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wasseff SK, Scherer SS (2015) Activated immune response in an inherited leukodystrophy disease caused by the loss of oligodendrocyte gap junctions. Neurobiol Dis 82:86–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Dermietzel R, Traub O, Hwang TK, Beyer E, Bennett MV, Spray DC, Willecke K (1989) Differential expression of three gap junction proteins in developing and mature brain tissues. Proc Natl Acad Sci USA 86:10148–10152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ochalski PA, Frankenstein UN, Hertzberg EL, Nagy JI (1997) Connexin-43 in rat spinal cord: localization in astrocytes and identification of heterotypic astro-oligodendrocytic gap junctions. Neuroscience 76:931–945

    Article  CAS  PubMed  Google Scholar 

  160. Nagy JI, Patel D, Ochalski PA, Stelmack GL (1999) Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance. Neuroscience 88:447–468

    Article  CAS  PubMed  Google Scholar 

  161. Swenson KI, Jordan JR, Beyer EC, Paul DL (1989) Formation of gap junctions by expression of connexins in Xenopus oocyte pairs. Cell 57:145–155

    Article  CAS  PubMed  Google Scholar 

  162. Werner R, Levine E, Rabadan-Diehl C, Dahl G (1989) Formation of hybrid cell-cell channels. Proc Natl Acad Sci USA 86:5380–5384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Dahl E, Manthey D, Chen Y, Schwarz HJ, Chang YS, Lalley PA, Nicholson BJ, Willecke K (1996) Molecular cloning and functional expression of mouse connexin-30,a gap junction gene highly expressed in adult brain and skin. J Biol Chem 271:17903–17910

    Article  CAS  PubMed  Google Scholar 

  164. Nagy JI, Ionescu AV, Lynn BD, Rash JE (2003) Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: implications from normal and connexin32 knockout mice. Glia 44:205–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Orthmann-Murphy JL, Freidin M, Fischer E, Scherer SS, Abrams CK (2007) Two distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins. J Neurosci 27:13949–13957

    Article  CAS  PubMed  Google Scholar 

  166. Magnotti LM, Goodenough DA, Paul DL (2011) Functional heterotypic interactions between astrocyte and oligodendrocyte connexins. Glia 59:26–34

    Article  PubMed  PubMed Central  Google Scholar 

  167. Lutz SE, Zhao Y, Gulinello M, Lee SC, Raine CS, Brosnan CF (2009) Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation. J Neurosci 29:7743–7752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hertz L, Soliven B, Hertz E, Szuchet S, Nelson DJ (1990) Channel-mediated and carrier-mediated uptake of K+ into cultured ovine oligodendrocytes. Glia 3:550–557

    Article  CAS  PubMed  Google Scholar 

  169. Nagy JI, Ionescu AV, Lynn BD, Rash JE (2003) Connexin29 and connexin32 at oligodendrocyte and astrocyte gap junctions and in myelin of the mouse central nervous system. J Comp Neurol 464:356–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Altevogt BM, Kleopa KA, Postma FR, Scherer SS, Paul DL (2002) Connexin29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems. J Neurosci 22:6458–6470

    CAS  PubMed  Google Scholar 

  171. Nagy JI, Rash JE (2003) Astrocyte and oligodendrocyte connexins of the glial syncytium in relation to astrocyte anatomical domains and spatial buffering. Cell Commun Adhes 10:401–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ahn M, Lee J, Gustafsson A, Enriquez A, Lancaster E, Sul JY, Haydon PG, Paul DL, Huang Y, Abrams CK, Scherer SS (2008) Cx29 and Cx32, two connexins expressed by myelinating glia, do not interact and are functionally distinct. J Neurosci Res 86:992–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Rash JE, Vanderpool KG, Yasumura T, Hickman J, Beatty JT, Nagy JI (2016) KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction. J Neurophysiol 115:1836–1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129:1045–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wallraff A, Kohling R, Heinemann U, Theis M, Willecke K, Steinhauser C (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 26:5438–5447

    Article  CAS  PubMed  Google Scholar 

  176. Rutecki PA, Lebeda FJ, Johnston D (1985) Epileptiform activity induced by changes in extracellular potassium in hippocampus. J Neurophysiol 54:1363–1374

    CAS  PubMed  Google Scholar 

  177. Yaari Y, Konnerth A, Heinemann U (1986) Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. II. Role of extracellular potassium. J Neurophysiol 56:424–438

    CAS  PubMed  Google Scholar 

  178. Traynelis SF, Dingledine R (1988) Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J Neurophysiol 59:259–276

    CAS  PubMed  Google Scholar 

  179. Du M, Li J, Wang R, Wu Y (2016) The influence of potassium concentration on epileptic seizures in a coupled neuronal model in the hippocampus. Cognit Neurodyn 10:405–414

    Article  Google Scholar 

  180. Hubbard JA, Binder DK (2016) Astrocytes and epilepsy. Academc Press, Amsterdam

    Google Scholar 

  181. Erecinska M, Cherian S, I AS (2005) Brain development and susceptibility to damage; ion levels and movements. Curr Top Dev Biol 69:139–186

    Article  CAS  PubMed  Google Scholar 

  182. Wolff JR, Chao TI (2004) Cytoarchitectonics of non-neuronal cells in the central nervous system. In: L H (ed) Non-neuronal cells of the nervous system: function and dysfunction. Elsevier, Amsterdam, pp 1–51

    Google Scholar 

  183. Tress O, Maglione M, May D, Pivneva T, Richter N, Seyfarth J, Binder S, Zlomuzica A, Seifert G, Theis M, Dere E, Kettenmann H, Willecke K (2012) Panglial gap junctional communication is essential for maintenance of myelin in the CNS. J Neurosci 32:7499–7518

    Article  CAS  PubMed  Google Scholar 

  184. Nualart-Marti A, Solsona C, Fields RD (2013) Gap junction communication in myelinating glia. Biochim Biophys Acta 1828:69–78

    Article  CAS  PubMed  Google Scholar 

  185. Waxman SG, Ritchie JM (1985) Organization of ion channels in the myelinated nerve fiber. Science 228:1502–1507

    Article  CAS  PubMed  Google Scholar 

  186. MacKenzie G, Franks NP, Brickley SG (2015) Two-pore domain potassium channels enable action potential generation in the absence of voltage-gated potassium channels. Pflugers Arch 467:989–999

    Article  CAS  PubMed  Google Scholar 

  187. Chiu SY, Ritchie JM (1981) Evidence for the presence of potassium channels in the paranodal region of acutely demyelinated mammalian single nerve fibres. J Physiol 313:415–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Baba H, Akita H, Ishibashi T, Inoue Y, Nakahira K, Ikenaka K (1999) Completion of myelin compaction, but not the attachment of oligodendroglial processes triggers K(+) channel clustering. J Neurosci Res 58:752–764

    Article  CAS  PubMed  Google Scholar 

  189. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927

    CAS  PubMed  Google Scholar 

  190. Rasband MN, Park EW, Zhen D, Arbuckle MI, Poliak S, Peles E, Grant SG, Trimmer JS (2002) Clustering of neuronal potassium channels is independent of their interaction with PSD-95. J Cell Biol 159:663–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhang CL, Wilson JA, Williams J, Chiu SY (2006) Action potentials induce uniform calcium influx in mammalian myelinated optic nerves. J Neurophysiol 96:695–709

    Article  CAS  PubMed  Google Scholar 

  192. Jenkins SM, Bennett V (2002) Developing nodes of Ranvier are defined by ankyrin-G clustering and are independent of paranodal axoglial adhesion. Proc Natl Acad Sci USA 99:2303–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Brasko C, Hawkins V, De La Rocha IC, Butt AM (2016) Expression of Kir4.1 and Kir5.1 inwardly rectifying potassium channels in oligodendrocytes, the myelinating cells of the CNS. Brain Struct Funct

  194. Hajek I, Subbarao KV, Hertz L (1996) Acute and chronic effects of potassium and noradrenaline on Na+, K+-ATPase activity in cultured mouse neurons and astrocytes. Neurochem Int 28:335–342

    Article  CAS  PubMed  Google Scholar 

  195. Lebaron FN (1955) The resynthesis of glycogen by guinea pig cerebral-cortex slices. Biochem J 61:80–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Fiala JC, Kirov SA, Feinberg MD, Petrak LJ, George P, Goddard CA, Harris KM (2003) Timing of neuronal and glial ultrastructure disruption during brain slice preparation and recovery in vitro. J Comp Neurol 465:90–103

    Article  PubMed  Google Scholar 

  197. Osorio MJ, Goldman SA (2016) Glial progenitor cell-based treatment of the childhood leukodystrophies. Exp Neurol 283:476–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Uhlenberg B, Schuelke M, Ruschendorf F, Ruf N, Kaindl AM, Henneke M, Thiele H, Stoltenburg-Didinger G, Aksu F, Topaloglu H, Nurnberg P, Hubner C, Weschke B, Gartner J (2004) Mutations in the gene encoding gap junction protein alpha 12 (connexin 46.6) cause Pelizaeus-Merzbacher-like disease. Am J Hum Genet 75:251–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Hobson GM, Garbern JY (2012) Pelizaeus-Merzbacher disease, Pelizaeus-Merzbacher-like disease 1, and related hypomyelinating disorders. Semin Neurol 32:62–67

    Article  PubMed  Google Scholar 

  200. Tesson C, Koht J, Stevanin G (2015) Delving into the complexity of hereditary spastic paraplegias: how unexpected phenotypes and inheritance modes are revolutionizing their nosology. Hum Genet 134:511–538

    Article  PubMed  PubMed Central  Google Scholar 

  201. van Vliet E, Dijkema GH, Schuit E, Heida KY, Roos C, van der Post J, Parry EC, McCowan L, Lyell DJ, El-Sayed YY, Carr DB, Clark AL, Mahdy ZA, Uma M, Sayin NC, Varol GF, Mol BW, Oudijk MA (2016) Nifedipine maintenance tocolysis and perinatal outcome: an individual participant data meta-analysis. BJOG 123:1753–1760

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Andrea Rivera, University of Porthmouth, U.K. is thanked for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Hertz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaban, Y.H.G., Chen, Y., Hertz, E. et al. Severe Convulsions and Dysmyelination in Both Jimpy and Cx32/47 −/− Mice may Associate Astrocytic L-Channel Function with Myelination and Oligodendrocytic Connexins with Internodal Kv Channels. Neurochem Res 42, 1747–1766 (2017). https://doi.org/10.1007/s11064-017-2194-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2194-z

Keywords

Navigation