Skip to main content

Advertisement

Log in

Astrocytes in Migration

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cell migration is a fundamental phenomenon that underlies tissue morphogenesis, wound healing, immune response, and cancer metastasis. Great progresses have been made in research methodologies, with cell migration identified as a highly orchestrated process. Brain is considered the most complex organ in the human body, containing many types of neural cells with astrocytes playing crucial roles in monitoring normal functions of the central nervous system. Astrocytes are mostly quiescent under normal physiological conditions in the adult brain but become migratory after injury. Under most known pathological conditions in the brain, spinal cord and retina, astrocytes are activated and become hypertrophic, hyperplastic, and up-regulating GFAP based on the grades of severity. These three observations are the hallmark in glia scar formation—astrogliosis. The reactivation process is initiated with structural changes involving cell process migration and ended with cell migration. Detailed mechanisms in astrocyte migration have not been studied extensively and remain largely unknown. Here, we therefore attempt to review the mechanisms in migration of astrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vicente-Manzanares M, Horwitz AR (2011) Cell migration: an overview. Methods Mol Biol 769:1–24

    Article  CAS  PubMed  Google Scholar 

  2. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709

    Article  CAS  PubMed  Google Scholar 

  3. Friedl P, Wolf K (2010) Plasticity of cell migration: a multiscale tuning model. J Cell Biol 188:11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Olson MF, Sahai E (2009) The actin cytoskeleton in cancer cell motility. Clin Exp Metastasis 26:273–287

    Article  PubMed  Google Scholar 

  5. Verkhratsky A, Sofroniew MV, Messing A, deLanerolle NC, Rempe D, Rodriguez JJ, Nedergaard M (2012) Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neuro. doi:10.1042/AN20120010

    Google Scholar 

  6. Oliveira JF, Sardinha VM, Guerra-Gomes S, Araque A, Sousa N (2015) Do stars govern our actions? Astrocyte involvement in rodent behavior. Trends Neurosci 38:535–549

    Article  CAS  PubMed  Google Scholar 

  7. Martin R, Bajo-Graneras R, Moratalla R, Perea G, Araque A (2015) Glial cell signaling. Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways. Science 349:730–734

    Article  CAS  PubMed  Google Scholar 

  8. Denysenko T, Gennero L, Juenemann C, Morra I, Masperi P, Ceroni V, Pragliola A, Ponzetto A, Melcarne A (2014) Heterogeneous phenotype of human glioblastoma: in vitro study. Cell Biochem Funct 32:164–176

    Article  CAS  PubMed  Google Scholar 

  9. Cayre M, Canoll P, Goldman JE (2009) Cell migration in the normal and pathological postnatal mammalian brain. Prog Neurobiol 88:41–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marin O, Rubenstein JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483

    Article  CAS  PubMed  Google Scholar 

  11. Cooper JA (2013) Cell biology in neuroscience: mechanisms of cell migration in the nervous system. J Cell Biol 202:725–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ayala R, Shu T, Tsai LH (2007) Trekking across the brain: the journey of neuronal migration. Cell 128:29–43

    Article  CAS  PubMed  Google Scholar 

  13. Garcia-Marin V, Garcia-Lopez P, Freire M (2007) Cajal’s contributions to glia research. Trends Neurosci 30:479–487

    Article  CAS  PubMed  Google Scholar 

  14. Levison SW, Goldman JE (1993) Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron 10:201–212

    Article  CAS  PubMed  Google Scholar 

  15. Goldman JE, Zerlin M, Newman S, Zhang L, Gensert J (1997) Fate determination and migration of progenitors in the postnatal mammalian CNS. Dev Neurosci 19:42–48

    Article  CAS  PubMed  Google Scholar 

  16. Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous system. J Clin Invest 122:1164–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hefendehl JK, Neher JJ, Suhs RB, Kohsaka S, Skodras A, Jucker M (2014) Homeostatic and injury-induced microglia behavior in the aging brain. Aging Cell 13:60–69

    Article  CAS  PubMed  Google Scholar 

  18. Madry C, Attwell D (2015) Receptors, ion channels, and signaling mechanisms underlying microglial dynamics. J Biol Chem 290:12443–12450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mitew S, Hay CM, Peckham H, Xiao J, Koenning M, Emery B (2014) Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience 276:29–47

    Article  CAS  PubMed  Google Scholar 

  20. Oberheim NA, Goldman SA, Nedergaard M (2012) Heterogeneity of astrocytic form and function. Methods Mol Biol 814:23–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Allen NJ, Barres BA (2009) Neuroscience: glia-more than just brain glue. Nature 457:675–677

    Article  CAS  PubMed  Google Scholar 

  22. Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC (2014) Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol 11:13–30

    Article  PubMed  PubMed Central  Google Scholar 

  23. McKenna MC (2007) The glutamate–glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85:3347–3358

    Article  CAS  PubMed  Google Scholar 

  24. Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553

    Article  CAS  PubMed  Google Scholar 

  25. Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bazargani N, Attwell D (2016) Astrocyte calcium signaling: the third wave. Nat Neurosci 19:182–189

    Article  CAS  PubMed  Google Scholar 

  27. Choi BH, Lapham LW (1978) Radial glia in the human fetal cerebrum: a combined Golgi, immunofluorescent and electron microscopic study. Brain Res 148:295–311

    Article  CAS  PubMed  Google Scholar 

  28. Nadarajah B, Brunstrom JE, Grutzendler J, Wong RO, Pearlman AL (2001) Two modes of radial migration in early development of the cerebral cortex. Nat Neurosci 4:143–150

    Article  CAS  PubMed  Google Scholar 

  29. Canoll P, Goldman JE (2008) The interface between glial progenitors and gliomas. Acta Neuropathol (Berl) 116:465–477

    Article  Google Scholar 

  30. Nait-Oumesmar B, Picard-Riera N, Kerninon C, Decker L, Seilhean D, Hoglinger GU, Hirsch EC, Reynolds R, Baron-Van Evercooren A (2007) Activation of the subventricular zone in multiple sclerosis: evidence for early glial progenitors. Proc Natl Acad Sci USA 104:4694–4699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Parent JM, von dem Bussche N, Lowenstein DH (2006) Prolonged seizures recruit caudal subventricular zone glial progenitors into the injured hippocampus. Hippocampus 16:321–328

    Article  CAS  PubMed  Google Scholar 

  32. Wang YF, Hamilton K (2009) Chronic vs. acute interactions between supraoptic oxytocin neurons and astrocytes during lactation: role of glial fibrillary acidic protein plasticity. Sci World J 9:1308–1320

    Article  CAS  Google Scholar 

  33. Panatier A (2009) Glial cells: indispensable partners of hypothalamic magnocellular neurones. J Neuroendocrinol 21:665–672

    Article  CAS  PubMed  Google Scholar 

  34. Hatton GI, Wang YF (2008) Neural mechanisms underlying the milk ejection burst and reflex. Prog Brain Res 170:155–166

    Article  CAS  PubMed  Google Scholar 

  35. Sun D, Jakobs TC (2012) Structural remodeling of astrocytes in the injured CNS. Neuroscientist 18:567–588

    Article  PubMed  CAS  Google Scholar 

  36. Rolls A, Shechter R, Schwartz M (2009) The bright side of the glial scar in CNS repair. Nat Rev Neurosci 10:235–241

    Article  CAS  PubMed  Google Scholar 

  37. Davies SJ, Fitch MT, Memberg SP, Hall AK, Raisman G, Silver J (1997) Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390:680–683

    CAS  PubMed  Google Scholar 

  38. Silver J, Schwab ME, Popovich PG (2015) Central nervous system regenerative failure: role of oligodendrocytes, astrocytes, and microglia. Cold Spring Harb Perspect Biol 7:a020602

    Article  PubMed Central  CAS  Google Scholar 

  39. McKenna MC, Scafidi S, Robertson CL (2015) Metabolic alterations in developing brain after injury: knowns and unknowns. Neurochem Res 40:2527–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu AC, Lee YL, Eng LF (1993) Astrogliosis in culture: I. The model and the effect of antisense oligonucleotides on glial fibrillary acidic protein synthesis. J Neurosci Res 34:295–303

    Article  CAS  PubMed  Google Scholar 

  41. Faber-Elman A, Solomon A, Abraham JA, Marikovsky M, Schwartz M (1996) Involvement of wound-associated factors in rat brain astrocyte migratory response to axonal injury: in vitro simulation. J Clin Invest 97:162–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gao K, Wang CR, Jiang F, Wong AY, Su N, Jiang JH, Chai RC, Vatcher G, Teng J, Chen J, Jiang YW, Yu AC (2013) Traumatic scratch injury in astrocytes triggers calcium influx to activate the JNK/c-Jun/AP-1 pathway and switch on GFAP expression. Glia 61:2063–2077

    Article  PubMed  Google Scholar 

  43. Chai RC, Jiang JH, Wong AY, Jiang F, Gao K, Vatcher G, Hoi Yu AC (2013) AQP5 is differentially regulated in astrocytes during metabolic and traumatic injuries. Glia 61:1748–1765

    Article  PubMed  Google Scholar 

  44. Wu BY, Yu AC (2000) Quercetin inhibits c-fos, heat shock protein, and glial fibrillary acidic protein expression in injured astrocytes. J Neurosci Res 62:730–736

    Article  CAS  PubMed  Google Scholar 

  45. Todaro GJ, Lazar GK, Green H (1965) The initiation of cell division in a contact-inhibited mammalian cell line. J Cell Physiol 66:325–333

    Article  CAS  PubMed  Google Scholar 

  46. Boyden S (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115:453–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dunn GA, Zicha D (1993) Long-term chemotaxis of neutrophils in stable gradients: preliminary evidence of periodic behavior. Blood Cells 19:25–39; discussion 39–41

    CAS  PubMed  Google Scholar 

  48. Roth SJ, Carr MW, Rose SS, Springer TA (1995) Characterization of transendothelial chemotaxis of T lymphocytes. J Immunol Methods 188:97–116

    Article  CAS  PubMed  Google Scholar 

  49. Dorudi S, Hart IR (1993) Mechanisms underlying invasion and metastasis. Curr Opin Oncol 5:130–135

    CAS  PubMed  Google Scholar 

  50. Theveneau E, Mayor R (2011) Beads on the run: beads as alternative tools for chemotaxis assays. Methods Mol Biol 769:449–460

    Article  CAS  PubMed  Google Scholar 

  51. Wells CM, Ahmed T, Masters JR, Jones GE (2005) Rho family GTPases are activated during HGF-stimulated prostate cancer-cell scattering. Cell Motil Cytoskeleton 62:180–194

    Article  CAS  PubMed  Google Scholar 

  52. Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2:599–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Le Devedec SE, Yan K, de Bont H, Ghotra V, Truong H, Danen EH, Verbeek F, van de Water B (2010) Systems microscopy approaches to understand cancer cell migration and metastasis. Cell Mol Life Sci 67:3219–3240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Deforet M, Parrini MC, Petitjean L, Biondini M, Buguin A, Camonis J, Silberzan P (2012) Automated velocity mapping of migrating cell populations (AVeMap). Nat Methods 9:1081–1083

    Article  CAS  PubMed  Google Scholar 

  55. Rorth P (2009) Collective cell migration. Annu Rev Cell Dev Biol 25:407–429

    Article  CAS  PubMed  Google Scholar 

  56. Schnittler HJ, Franke RP, Akbay U, Mrowietz C, Drenckhahn D (1993) Improved in vitro rheological system for studying the effect of fluid shear stress on cultured cells. Am J Physiol 265:C289–C298

    CAS  PubMed  Google Scholar 

  57. Suter DM, Errante LD, Belotserkovsky V, Forscher P (1998) The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate-cytoskeletal coupling. J Cell Biol 141:227–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hattermann K, Held-Feindt J, Mentlein R (2011) Spheroid confrontation assay: a simple method to monitor the three-dimensional migration of different cell types in vitro. Ann Anat 193:181–184

    Article  PubMed  Google Scholar 

  59. Nystrom ML, Thomas GJ, Stone M, Mackenzie IC, Hart IR, Marshall JF (2005) Development of a quantitative method to analyse tumour cell invasion in organotypic culture. J Pathol 205:468–475

    Article  CAS  PubMed  Google Scholar 

  60. Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell–matrix adhesions to the third dimension. Science 294:1708–1712

    Article  CAS  PubMed  Google Scholar 

  61. Nishiwaki K (1999) Mutations affecting symmetrical migration of distal tip cells in Caenorhabditis elegans. Genetics 152:985–997

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Luster AD (1998) Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med 338:436–445

    Article  CAS  PubMed  Google Scholar 

  63. Trede NS, Langenau DM, Traver D, Look AT, Zon LI (2004) The use of zebrafish to understand immunity. Immunity 20:367–379

    Article  CAS  PubMed  Google Scholar 

  64. Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3:921–930

    Article  CAS  PubMed  Google Scholar 

  65. Eccles SA, Welch DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet (London, England) 369:1742–1757

    Article  CAS  Google Scholar 

  66. Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357

    Article  CAS  PubMed  Google Scholar 

  67. Boudreau N, Bissell MJ (1998) Extracellular matrix signaling: integration of form and function in normal and malignant cells. Curr Opin Cell Biol 10:640–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  CAS  PubMed  Google Scholar 

  69. van Strien ME, Breve JJ, Fratantoni S, Schreurs MW, Bol JG, Jongenelen CA, Drukarch B, van Dam AM (2011) Astrocyte-derived tissue transglutaminase interacts with fibronectin: a role in astrocyte adhesion and migration?. PloS One 6:e25037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Morgan MR, Humphries MJ, Bass MD (2007) Synergistic control of cell adhesion by integrins and syndecans. Nat Rev Mol Cell Biol 8:957–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ginsberg MH (2014) Integrin activation. BMB Rep 47:655–659

    Article  PubMed  PubMed Central  Google Scholar 

  72. Nussinov R, Tsai CJ, Liu J (2014) Principles of allosteric interactions in cell signaling. J Am Chem Soc 136:17692–17701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wagner S, Tagaya M, Koziol JA, Quaranta V, del Zoppo GJ (1997) Rapid disruption of an astrocyte interaction with the extracellular matrix mediated by integrin alpha 6 beta 4 during focal cerebral ischemia/reperfusion. Stroke 28:858–865

    Article  CAS  PubMed  Google Scholar 

  74. Robel S, Mori T, Zoubaa S, Schlegel J, Sirko S, Faissner A, Goebbels S, Dimou L, Gotz M (2009) Conditional deletion of beta1-integrin in astroglia causes partial reactive gliosis. Glia 57:1630–1647

    Article  PubMed  Google Scholar 

  75. Etienne-Manneville S, Hall A (2001) Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106:489–498

    Article  CAS  PubMed  Google Scholar 

  76. Konopka A, Zeug A, Skupien A, Kaza B, Mueller F, Chwedorowicz A, Ponimaskin E, Wilczynski GM, Dzwonek J (2016) Cleavage of hyaluronan and CD44 adhesion molecule regulate astrocyte morphology via Rac1 signalling. PloS One 11:e0155053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Sosunov AA, Guilfoyle E, Wu X, McKhann GM 2nd, Goldman JE (2013) Phenotypic conversions of “protoplasmic” to “reactive” astrocytes in Alexander disease. J Neurosci 33:7439–7450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bourguignon LY, Gilad E, Peyrollier K, Brightman A, Swanson RA (2007) Hyaluronan-CD44 interaction stimulates Rac1 signaling and PKN gamma kinase activation leading to cytoskeleton function and cell migration in astrocytes. J Neurochem 101:1002–1017

    Article  CAS  PubMed  Google Scholar 

  79. Bourguignon LY (2008) Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression. Semin Cancer Biol 18:251–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lanosa XA, Colombo JA (2008) Cell contact-inhibition signaling as part of wound-healing processes in brain. Neuron Glia Biol 4:27–34

    Article  PubMed  Google Scholar 

  81. Ogata K, Kosaka T (2002) Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience 113:221–233

    Article  CAS  PubMed  Google Scholar 

  82. Huttenlocher A, Lakonishok M, Kinder M, Wu S, Truong T, Knudsen KA, Horwitz AF (1998) Integrin and cadherin synergy regulates contact inhibition of migration and motile activity. J Cell Biol 141:515–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Behrens J, Jerchow BA, Wurtele M, Grimm J, Asbrand C, Wirtz R, Kuhl M, Wedlich D, Birchmeier W (1998) Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science 280:596–599

    Article  CAS  PubMed  Google Scholar 

  84. Silvestre J, Kenis PJ, Leckband DE (2009) Cadherin and integrin regulation of epithelial cell migration. Langmuir 25:10092–10099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang C, Iyer RR, Yu AC, Yong RL, Park DM, Weil RJ, Ikejiri B, Brady RO, Lonser RR, Zhuang Z (2012) beta-Catenin signaling initiates the activation of astrocytes and its dysregulation contributes to the pathogenesis of astrocytomas. Proc Natl Acad Sci USA 109:6963–6968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jope RS, Yuskaitis CJ, Beurel E (2007) Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res 32:577–595

    Article  CAS  PubMed  Google Scholar 

  87. Gonczy P (2008) Mechanisms of asymmetric cell division: flies and worms pave the way. Nat Rev Mol Cell Biol 9:355–366

    Article  PubMed  CAS  Google Scholar 

  88. Mellman I, Nelson WJ (2008) Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol 9:833–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cotton M, Claing A (2009) G protein-coupled receptors stimulation and the control of cell migration. Cell Signal 21:1045–1053

    Article  CAS  PubMed  Google Scholar 

  90. Tsvetanova NG, Irannejad R, von Zastrow M (2015) G protein-coupled receptor (GPCR) signaling via heterotrimeric G proteins from endosomes. J Biol Chem 290:6689–6696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rutkowska A, Preuss I, Gessier F, Sailer AW, Dev KK (2015) EBI2 regulates intracellular signaling and migration in human astrocyte. Glia 63:341–351

    Article  PubMed  Google Scholar 

  92. Daugvilaite V, Arfelt KN, Benned-Jensen T, Sailer AW, Rosenkilde MM (2014) Oxysterol-EBI2 signaling in immune regulation and viral infection. Eur J Immunol 44:1904–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shu Q, Hu ZL, Huang C, Yu XW, Fan H, Yang JW, Fang P, Ni L, Chen JG, Wang F (2014) Orexin-A promotes cell migration in cultured rat astrocytes via Ca2+-dependent PKCalpha and ERK1/2 signals. PloS One 9:e95259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Hall A (2005) Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33:891–895

    Article  CAS  PubMed  Google Scholar 

  95. Thompson BJ (2013) Cell polarity: models and mechanisms from yeast, worms and flies. Development 140:13–21

    Article  CAS  PubMed  Google Scholar 

  96. Etienne-Manneville S (2004) Cdc42–the centre of polarity. J Cell Sci 117:1291–1300

    Article  CAS  PubMed  Google Scholar 

  97. Kong M, Munoz N, Valdivia A, Alvarez A, Herrera-Molina R, Cardenas A, Schneider P, Burridge K, Quest AF, Leyton L (2013) Thy-1-mediated cell–cell contact induces astrocyte migration through the engagement of alphaVbeta3 integrin and syndecan-4. Biochim Biophys Acta 1833:1409–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bershadsky AD, Vaisberg EA, Vasiliev JM (1991) Pseudopodial activity at the active edge of migrating fibroblast is decreased after drug-induced microtubule depolymerization. Cell Motil Cytoskeleton 19:152–158

    Article  CAS  PubMed  Google Scholar 

  99. Lepekhin EA, Eliasson C, Berthold CH, Berezin V, Bock E, Pekny M (2001) Intermediate filaments regulate astrocyte motility. J Neurochem 79:617–625

    Article  CAS  PubMed  Google Scholar 

  100. Papadopoulos MC, Saadoun S, Verkman AS (2008) Aquaporins and cell migration. Pflugers Arch 456:693–700

    Article  CAS  PubMed  Google Scholar 

  101. Verkman AS, Binder DK, Bloch O, Auguste K, Papadopoulos MC (2006) Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophys Acta 1758:1085–1093

    Article  CAS  PubMed  Google Scholar 

  102. Smith AJ, Jin BJ, Ratelade J, Verkman AS (2014) Aggregation state determines the localization and function of M1- and M23-aquaporin-4 in astrocytes. J Cell Biol 204:559–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Papadopoulos MC, Verkman AS (2008) Potential utility of aquaporin modulators for therapy of brain disorders. Prog Brain Res 170:589–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Auguste KI, Jin S, Uchida K, Yan D, Manley GT, Papadopoulos MC, Verkman AS (2007) Greatly impaired migration of implanted aquaporin-4-deficient astroglial cells in mouse brain toward a site of injury. FASEB J 21:108–116

    Article  CAS  PubMed  Google Scholar 

  105. Zhang C, Asnaghi L, Gongora C, Patek B, Hose S, Ma B, Fard MA, Brako L, Singh K, Goldberg MF, Handa JT, Lo WK, Eberhart CG, Zigler JS Jr, Sinha D (2011) A developmental defect in astrocytes inhibits programmed regression of the hyaloid vasculature in the mammalian eye. Eur J Cell Biol 90:440–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ding T, Ma Y, Li W, Liu X, Ying G, Fu L, Gu F (2011) Role of aquaporin-4 in the regulation of migration and invasion of human glioma cells. Int J Oncol 38:1521–1531

    CAS  PubMed  Google Scholar 

  107. Kong H, Fan Y, Xie J, Ding J, Sha L, Shi X, Sun X, Hu G (2008) AQP4 knockout impairs proliferation, migration and neuronal differentiation of adult neural stem cells. J Cell Sci 121:4029–4036

    Article  CAS  PubMed  Google Scholar 

  108. Wei C, Wang X, Zheng M, Cheng H (2012) Calcium gradients underlying cell migration. Curr Opin Cell Biol 24:254–261

    Article  CAS  PubMed  Google Scholar 

  109. Sun X, Zhao D, Li YL, Sun Y, Lei XH, Zhang JN, Wu MM, Li RY, Zhao ZF, Zhang ZR, Jiang CL (2013) Regulation of ASIC1 by Ca2+/calmodulin-dependent protein kinase II in human glioblastoma multiforme. Oncol Rep 30:2852–2858

    CAS  PubMed  Google Scholar 

  110. Lin CC, Lee IT, Wu WB, Liu CJ, Hsieh HL, Hsiao LD, Yang CC, Yang CM (2013) Thrombin mediates migration of rat brain astrocytes via PLC, Ca(2)(+), CaMKII, PKCalpha, and AP-1-dependent matrix metalloproteinase-9 expression. Mol Neurobiol 48:616–630

    Article  CAS  PubMed  Google Scholar 

  111. Wang HH, Hsieh HL, Yang CM (2010) Calmodulin kinase II-dependent transactivation of PDGF receptors mediates astrocytic MMP-9 expression and cell motility induced by lipoteichoic acid. J Neuroinflamm 7:84

    Article  CAS  Google Scholar 

  112. Matyash M, Matyash V, Nolte C, Sorrentino V, Kettenmann H (2002) Requirement of functional ryanodine receptor type 3 for astrocyte migration. FASEB J 16:84–86

    CAS  PubMed  Google Scholar 

  113. Adlercreutz H, Ervast HS, Tenhunen A, Tikkanen MJ (1973) Gas chromatographic and mass spectrometric studies on oestrogens in bile. I. Pregnant women. Acta Endocrinol (Copenh) 73:543–554

    CAS  Google Scholar 

  114. Kang W, Kim SH, Cho HJ, Jin J, Lee J, Joo KM, Nam DH (2015) Talin1 targeting potentiates anti-angiogenic therapy by attenuating invasion and stem-like features of glioblastoma multiforme. Oncotarget 6:27239–27251

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Beijing Natural Science Foundation (7091004); the National Basic Research Program of China (973 program) (2011CB504400); the National Natural Science Foundation of China (30870818, 31070974, 31171009 and 81471253); the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (81221002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lina Li or Albert Cheung Hoi Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, J.S., Gao, K., Chai, R.C. et al. Astrocytes in Migration. Neurochem Res 42, 272–282 (2017). https://doi.org/10.1007/s11064-016-2089-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2089-4

Keywords

Navigation