Skip to main content
Log in

Effective Mechanism for Synthesis of Neurotransmitter Glutamate and its Loading into Synaptic Vesicles

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glutamate accumulation into synaptic vesicles is a pivotal step in glutamate transmission. This process is achieved by a vesicular glutamate transporter (VGLUT) coupled to v-type proton ATPase. Normal synaptic transmission, in particular during intensive neuronal firing, would demand rapid transmitter re-filling of emptied synaptic vesicles. We have previously shown that isolated synaptic vesicles are capable of synthesizing glutamate from α-ketoglutarate (not from glutamine) by vesicle-bound aspartate aminotransferase for immediate uptake, in addition to ATP required for uptake by vesicle-bound glycolytic enzymes. This suggests that local synthesis of these substances, essential for glutamate transmission, could occur at the synaptic vesicle. Here we provide evidence that synaptosomes (pinched-off nerve terminals) also accumulate α-ketoglutarate-derived glutamate into synaptic vesicles within, at the expense of ATP generated through glycolysis. Glutamine-derived glutamate is also accumulated into synaptic vesicles in synaptosomes. The underlying mechanism is discussed. It is suggested that local synthesis of both glutamate and ATP at the presynaptic synaptic vesicle would represent an efficient mechanism for swift glutamate loading into synaptic vesicles, supporting maintenance of normal synaptic transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AAT:

Aspartate aminotransferase

ACPD:

1-Aminocyclopentane-1,3-dicarboxylic acid

α-KGA:

α-Ketoglutarate

FCCP:

Carbonyl cyanide p-(trifluoromethoxy)-phenylhydrazone

GAPDH:

Glyceraldehyde-3-phophate dehydrogenase

GABA:

γ-Aminobutyric acid

GDH:

Glutamate dehydrogenase

Gln:

Glutamine

GOT:

Glutamate oxaloacetate aminotransferase

HPLC:

High pressure liquid chromatography

hsp:

Heat shock protein

SV:

Synaptic vesicle

TCA:

Tricarboxylic acid

VGLUT:

Vesicular glutamate transporter

References

  1. Ueda T (1986) Glutamate transport in the synaptic vesicle. In: Roberts PJ, Storm-Mathisen J, Bradford HF (eds) Excitatory amino acids. Macmillan, London, pp 173–195

    Chapter  Google Scholar 

  2. Maycox PR, Hell JW, Jahn R (1990) Amino acid neurotransmission: spotlight on synaptic vesicles. Trends Neurosci 13:83–87

    Article  CAS  PubMed  Google Scholar 

  3. Ozkan ED, Ueda T (1998) Glutamate transport and storage in synaptic vesicles. Jpn J Pharmacol 77:1–10

    Article  CAS  PubMed  Google Scholar 

  4. Otis TS (2001) Vesicular glutamate transporters in cognito. Neuron 29:11–14

    Article  CAS  PubMed  Google Scholar 

  5. Reimer RJ, Fremeau RT Jr, Bellocchio EE, Edwards RH (2001) The essence of excitation. Curr Opin Cell Biol 13:417–421

    Article  CAS  PubMed  Google Scholar 

  6. Ueda T (2016) Vesicular glutamate uptake. In: Schousboe A, Sonnewald U (eds) Advanced neurobiology. Springer, New York (in press)

    Google Scholar 

  7. Naito S, Ueda T (1985) Characterization of glutamate uptake into synaptic vesicles. J Neurochem 44:99–109

    Article  CAS  PubMed  Google Scholar 

  8. Maycox PR, Deckwerth T, Hell JW, Jahn R (1988) Glutamate uptake by brain synaptic vesicles. Energy dependence of transport and functional reconstitution in proteoliposomes. J Biol Chem 263:15423–15428

    CAS  PubMed  Google Scholar 

  9. Fykse EM, Christensen H, Fonnum F (1989) Comparison of the properties of γ-aminobutyric acid and L-glutamate uptake into synaptic vesicles isolated from rat brain. J Neurochem 52:946–951

    Article  CAS  PubMed  Google Scholar 

  10. Tabb JS, Ueda T (1991) Phylogenetic studies on the synaptic vesicle glutamate transport system. J Neurosci 11:1822–1828

    CAS  PubMed  Google Scholar 

  11. Tabb JS, Kish PE, Van Dyke R, Ueda T (1992) Glutamate transport into synaptic vesicles. Roles of membrane potential, pH gradient, and intravesicular pH. J Biol Chem 267:15412–15418

    CAS  PubMed  Google Scholar 

  12. Wolosker H, de Souza DO, de Meis L (1996) Regulation of glutamate transport into synaptic vesicles by chloride and proton gradient. J Biol Chem 271:11726–11731

    Article  CAS  PubMed  Google Scholar 

  13. Lewis SM, Ueda T (1998) Solubilization and reconstitution of synaptic vesicle glutamate transport system. Methods Enzymol 296:125–144

    Article  CAS  PubMed  Google Scholar 

  14. Takamori S, Rhee JS, Rosenmund C, Jahn R (2000) Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407:189–194

    Article  CAS  PubMed  Google Scholar 

  15. Bellocchio EE, Reimer RJ, FremeauTJ, Edwards RH (2000) Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289:957–960

    Article  CAS  PubMed  Google Scholar 

  16. Juge N, Yoshida Y, Yatsushiro S, Omote H, Moriyama Y (2006) Vesicular glutamate transporter contains two independent transport machineries. J Biol Chem 281:39499–39506

    Article  CAS  PubMed  Google Scholar 

  17. Schenck S, Wojcik SM, Brose N, Takamori S (2009) A chloride conductance in VGLUT1 underlies maximal glutamate loading into synaptic vesicles. Nat Neurosci.12: 156–162

    Article  CAS  PubMed  Google Scholar 

  18. Preobraschenski J, Zander JF, Suzuki T, Ahnert-Hilger G, Jahn R (2014) Vesicular glutamate transporters use flexible anion and cation binding sites for efficient accumulation of neurotransmitter. Neuron 84:1287–1301

    Article  CAS  PubMed  Google Scholar 

  19. Bai L, Xu H, Collins JF, Ghishan FK (2001) Molecular and functional analysis of a novel neuronal vesicular glutamate transporter. J Biol Chem 276:36764–36769

    Article  CAS  PubMed  Google Scholar 

  20. Fremeau RT Jr, Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ, Bellocchio EE, Fortin D, Storm-Mathisen J, Edwards RH (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260

    Article  CAS  PubMed  Google Scholar 

  21. Takamori S, Rhee JS, Rosenmund C, Jahn R (2001) Identification of differentiation-associated brain-specific phosphate transporter as a second vesicular glutamate transporter (VGLUT2). J Neurosci 21:RC182

    CAS  PubMed  Google Scholar 

  22. Herzog E, Bellenchi GC, Gras C, Bernard V, Ravassard P, Bedet C, Gasnier B, Giros B, El Mestikawy S (2001) The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J Neurosci 21:RC181

    CAS  PubMed  Google Scholar 

  23. Varoqui H, Schafer MK-H, Zhu H, Weihe E, Erickson JD (2002) Identification of the differentiation-associated Na+/Pi transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 22:142–155

    CAS  PubMed  Google Scholar 

  24. Gras C, Herzog E, Bellenchi GC, Bernard V, Ravassard P, Pohl M, Gasnier B, Giros B, El Mestikawy S (2002) A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J Neurosci 22:5442–5451

    CAS  PubMed  Google Scholar 

  25. Fremeau RT Jr, Burman J, Qureshi T, Tran CH, Proctor J, Johnson J, Zhang H, Sulzer D, Copenhagen DR, Storm-Mathisen J, Reimer RJ, Chaudhry FA, Edwards RH (2002) The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc Natl Acad Sci USA 99:14488–14493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Takamori S, Malherbe P, Broger C, Jahn R (2002) Molecular cloning and functional characterization of human vesicular glutamate transporter 3. EMBO Rep 3:798–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schafer MK-H, Varoqui H, Defamie N, Weihe E, Erickson JD (2002) Molecular cloning and functional identification of mouse vesicular glutamate transporter 3 and its expression in subsets of novel excitatory neurons. J Biol Chem 277:50734–50748

    Article  PubMed  Google Scholar 

  28. Fremeau RT Jr, Kam K, Qureshi T, Johnson J, Copenhagen DR, Storm-Mathisen J, Chaudhry FA, Nicoll RA, Edwards RH (2004) Vesicular glutamate transporters 1 and 2 target to functionally distinct synaptic release sites. Science 304:1815–1819

    Article  CAS  PubMed  Google Scholar 

  29. Fremeau RT Jr, Voglmaier S, Seal RP, Edwards RH (2004) VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 27:98–103

    Article  CAS  PubMed  Google Scholar 

  30. Reimer RJ, Edwards RH (2004) Organic anion transport is the primary function of the SLC17/type I phosphate transporter family. Pflugers Arch 447:629–635

    Article  CAS  PubMed  Google Scholar 

  31. Kaneko T, Fujiyama F (2002) Complementary distribution of vesicular glutamate transporters in the central nervous system. Neurosci Res 42:243–250

    Article  CAS  PubMed  Google Scholar 

  32. Weston MC, Nehring RB, Wojcik SM, Rosenmund C (2011) Interplay betweenVGLUT isoforms and endophilin A1 regulates neurotransmitter release and short-term plasticity. Neuron 69:1147–1159

    Article  CAS  PubMed  Google Scholar 

  33. Herman MA, Ackermann F, Trimbuch T, Rosenmund C (2014) Vesicular glutamate transporter expression level affects synaptic vesicle release probability at hippocampal synapses in culture. J Neurosci 34:11781–11791

    Article  CAS  PubMed  Google Scholar 

  34. Tordera R, Totterdell S, Wojcik S, Brose N, Elizalde N, Lasheras B, Rio J (2007) Enhanced anxiety, depressive-like behaviour and impaired recognition memory in mice with reduced expression of the vesicular glutamate transporter 1 (VGLUT1). Eur J Neurosci 25:281–290

    Article  CAS  PubMed  Google Scholar 

  35. Balschun D, Moechars D, Callaerts-Vegh Z, Vermaercke B, Van Acker N, Andries L, D’Hooge R (2010) Vesicular glutamate transporter VGLUT1 has a role in hippocampal long-term potentiation and spatial reversal learning. Cereb Cortex 20:684–693

    Article  PubMed  Google Scholar 

  36. Ikemoto A, Bole DG, Ueda T (2003) Glycolysis and glutamate accumulation into synaptic vesicles: role of glyceraldehyde phosphate dehydrogenase and 3-phosphoglycerate kinase. J Biol Chem 278:5929–5940

    Article  CAS  PubMed  Google Scholar 

  37. Ishida A, Noda Y, Ueda T (2009) Synaptic vesicle-bound pyruvate kinase can support vesicular glutamate uptake. Neurochem Res 34:807–818

    Article  CAS  PubMed  Google Scholar 

  38. Takeda K, Ishida A, Takahash K, Ueda T (2012) Synaptic vesicles are capable of synthesizing the VGLUT substrate glutamate from α-ketoglutarate for vesicular loading. J Neurochem 121:184–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dunkley PR, Jarvie PE, Heath JW, Kidd GJ, Rostas JAP (1986) A rapid method for isolation of synaptosomes on percoll gradients. Brain Res 372:115–129

    Article  CAS  PubMed  Google Scholar 

  40. Naito S, Ueda T (1983) Adenosine triphosphate-dependent uptake of glutamate into protein I-associated synaptic vesicles. Biol Chem 258:696–699

    CAS  Google Scholar 

  41. McKenna MC (2007) The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85:3347–3358

    Article  CAS  PubMed  Google Scholar 

  42. Shank RP, Campbell GL (1982) Glutamine and alpha-ketoglutarate uptake and metabolism by nerve terminals enriched material from mouse cerebellum. Neurochem Res 7:601–616

    Article  CAS  PubMed  Google Scholar 

  43. Yudkoff M, Nelson D, Daikhin Y, Erecinska M (1994) Tricarboxylic acid cycle in rat brain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle. J Biol Chem 269:27414–27420

    CAS  PubMed  Google Scholar 

  44. Magee SC, Phillips AT (1971) Molecular properties of the multiple aspartate aminotransferases purified from rat brain. Biochemistry 31:3397–3405

    Article  Google Scholar 

  45. Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P, Müller SA, Rammner B, Gräter F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmüller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    Article  CAS  PubMed  Google Scholar 

  46. Burré J, Beckhaus T, Schägger H, Corvey C, Hofmann S, Karas M, Zimmermann H, Volknandt W (2006) Analysis of the synaptic vesicle proteome using three gel-based protein separation techniques. Proteomics 6:6250–6262

    Article  PubMed  CAS  Google Scholar 

  47. McKenna MC, Stevenson JH, Huan X, Hopkins IB (2000) Differential distribution of the enzymes glutamate dehydrogenase and aspartate aminotransferase in cortical synaptic mitochondria contributes to metabolic compartmentation in cortical synaptic terminals. Neurochem Int 37:229–241

    Article  CAS  PubMed  Google Scholar 

  48. Shapiro RA, Haser WG, Curthoys NP (1985) The orientation of phosphate-dependent glutaminase on the inner membrane of rat renal mitochondria. Arch Biochem Biophys 243:1–7

    Article  CAS  PubMed  Google Scholar 

  49. Aledo JC, de Pedro E, Gomez-Fabre PM, de Castro IN, Marquez J (1997) Submitochondrial localization and membrane topography of Ehrlich ascitic tumour cell glutaminase. Biochim Biophys Acta 1323:173–184

    Article  CAS  PubMed  Google Scholar 

  50. Albrecht J, Dolinska M, Hilgier W, Lipkowski AW, Nowacki J (2000) Modulation of glutamine uptake and phosphate-activated glutaminase activity in rat brain mitochondria by amino acids and their synthetic analogues. Neurochem Int 36:341–347

    Article  CAS  PubMed  Google Scholar 

  51. Zieminska E, Hilgier W, Waagepetersen HS, Hertz L, Sonnewald U, Schousboe A, Albrecht J (2004) Analysis of glutamine accumulation in rat brain mitochondria in the presence of a glutamine uptake inhibitor, histidine, reveals glutamine pools with a distinct access to deamidation. Neurochem Res 29:2121–2123

    Article  CAS  PubMed  Google Scholar 

  52. Bak LK, Zieminnska E, Waagepetersen HS, Schousboe A, Albrecht J (2008) Metabolism of [U-13C] glutamine and [U-13C]glutamate in isolated rat brain mitochondria suggests functional phosphate-activated glutaminase activity in matrix. Neurochem Res 33:273–278

    Article  CAS  PubMed  Google Scholar 

  53. Lain B, Yañez A, Iriarte A, Martinez-Carrion M (1998) Aminotransferase variants as probes for the role of the N-terminal region of a mature protein in mitochondrial precursor import and processing. J Biol Chem 273:4406–4415

    Article  CAS  PubMed  Google Scholar 

  54. Lain B, Iriarte A, Mattingly JR Jr, Moreno JI, Martinez-Carrion M (1995) Structural features of the precursor to mitochondrial aspartate minotransferase responsible for binding to hsp70. J Biol Chem 270:24732–24739

    Article  CAS  PubMed  Google Scholar 

  55. Benjamin AM, Quastel JH (1972) Locations of amino acids in brain slices from the rat. Tetrodotoxin-sensitive release of amino acids. Biochem J 128:631–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Taguchi T, Miyake K, Tanonaka K, Okada M, Takagi N, Fujimori K, Takeo S (1993) Sustained changes in acetylcholine and amino acid contents of brain regions following microsphere embolism in rats. Jpn J Pharmacol 62:269–278

    Article  CAS  PubMed  Google Scholar 

  57. LaNoue KF, Schoolwerth AC (1979) Metabolite transport in mitochondria. Annu Rev Biochem 48:871–922

    Article  CAS  PubMed  Google Scholar 

  58. Cheeseman AJ, Clark JB (1988) Influence of the malate-aspartate shuttle on oxidative metabolism in synaptosomes. J Neurochem 50:1559–1565

    Article  CAS  PubMed  Google Scholar 

  59. Napolioni V, Persico AM, Porcelli V, Palmieri L (2011) The mitochondrial aspartate/glutamate carrier AGC1 and calcium homeostasis: physiological links and abnormalities in autism. Mol Neurobiol 44:83–92

    Article  CAS  PubMed  Google Scholar 

  60. Rueda CB, Llorente-Folch I, Amigo I, Contreras L, González-Sánchez P, Martínez-Valero P, Juaristi I, Pardo B, Del Arco A, Satrústegui J (2014) Ca2+ regulation of mitochondrial function in neurons. Biochim Biophys Acta 1837:1617–1624

    Article  CAS  PubMed  Google Scholar 

  61. Shank RP, Campbell GL (1981) Avid Na+-dependent, high-affinity uptake of alpha-ketoglutarate by nerve terminal enriched material from mouse cerebellum. Life Sci 28:843–850

    Article  CAS  PubMed  Google Scholar 

  62. Shank RP, Campbell GL (1984) Alpha-ketoglutarate and malate uptake and metabolism by synaptosomes: further evidence for an astrocyte-to-neuron metabolic shuttle. J Neurochem 42:1153–1161

    Article  CAS  PubMed  Google Scholar 

  63. Peng L, Schousboe A, Hertz L (1991) Utilization of alpha-ketoglutarate as a precursor for transmitter glutamate in cultured cerebellar granule cells. Neurochem Res 16:29–34

    Article  CAS  PubMed  Google Scholar 

  64. Westergaard N, Sonnewald U, Schousboe A (1994) Release of α-ketoglutarate, malate and succinate from cultured astrocytes: possible role in amino acid neurotransmitter homeostasis. Neurosci Lett 176:105–109

    Article  CAS  PubMed  Google Scholar 

  65. Schousboe A, Westergaard N, Waagepetersen H, Larsson OM, Bakken IJ, Sonnewald U (1997) Trafficking between glia and neurons of TCA cycle intermediates and related metabolites. Glia 21:99–105

    Article  CAS  PubMed  Google Scholar 

  66. Shank RP, Bennett GS, Freytag SO, Campbell G (1985) Pyruvate carboxylase: astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329:364–367

    Article  CAS  PubMed  Google Scholar 

  67. Sonnewald U, Westergaard N, Petersen SB, Unsgard G, Schousboe A (1993) Metabolism of [U-13C] glutamate in astrocytes studied by 13C NMR spectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle. J Neurochem 61:1179–1182

    Article  CAS  PubMed  Google Scholar 

  68. McKenna M, Sonnewald U, Huang X, Stevenson J, Zielke HR (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J Neurochem 66:386–393

    Article  CAS  PubMed  Google Scholar 

  69. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    Article  CAS  PubMed  Google Scholar 

  70. Dienel GA, McKenna MC (2014) A dogma-breaking concept: glutamate oxidation in astrocytes is the source of lactate during aerobic glycolysis in resting subjects. J Neurochem 131:395–398

    Article  CAS  PubMed  Google Scholar 

  71. Sonnewald U (2014) Glutamate synthesis has to be matched by its degradation—where do all the carbons go? J Neurochem 131:399–406

    Article  CAS  PubMed  Google Scholar 

  72. Bradford HF, Ward HK, Thomas AJ (1978) Glutamine—a major substrate for nerve endings. J Neurochem 30:1453–1459

    Article  CAS  PubMed  Google Scholar 

  73. Hamberger AC, Chiang GH, Nylén ES, Scheff SW, Cotman CW (1979) Glutamate as a CNS transmitter. I. Evaluation of glucose and glutamine as precursors for the synthesis of preferentially released glutamate. Brain Res 168:513–530

    Article  CAS  PubMed  Google Scholar 

  74. Dennis SC, Lai JCK, Clark JB (1977) Comparative studies on glutamate metabolism in synaptic and non-synaptic rat brain mitochondria. Biochem J 164:727–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Palaiologos G, Hertz L, Schousboe A (1988) Evidence that aspartate aminotransferase activity and ketodicarboxylate carrier function are essential for biosynthesis of transmitter glutamate. J Neurochem 51:317–320

    Article  CAS  PubMed  Google Scholar 

  76. Bisaccia F, Indiveri C, Palmieri F (1985) Purification of reconstitutively active α-ketoglutarate carrier from pig heart mitochondria. Biochim Biophys Acta 810:362–369

    Article  CAS  PubMed  Google Scholar 

  77. Bolli R, Narecz KA, Azzi A (1989) Monocarboxylate and α-ketoglutarate carriers from bovine heart mitochondria. J Biol Chem 264:18024–18030

    CAS  PubMed  Google Scholar 

  78. Palaiologos G, Hertz L, Schousboe A (1989) Role of aspartate aminotransferase and mitochondrial dicarboxylate transport for release of endogenously and exogenously supplied neurotransmitter in glutamatergic neurons. Neurochem Res 14:359–366

    Article  CAS  PubMed  Google Scholar 

  79. Altschuler RA, Neises GR, Harmison GG, Wenthold RJ, Fex J (1981) Immunocytochemical localization of aspartate aminotransferase immunoreactivity in cochlear nucleus of the guinea pig. Proc Natl Acad Sci USA 78:6553–6657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Altschuler RA, Mosinger JL, Harmison GG, Parakkal MH, Wenthold RJ (1982) Aspartate aminotransferase-like immunoreactivity as a marker for aspartate/glutamate in guinea pig photoreceptors. Nature 298:657–659

    Article  CAS  PubMed  Google Scholar 

  81. Ueda T, Ikemoto A (2007) Cytoplasmic glycolytic enzymes. Synaptic vesicle-associated glycolytic ATP-generating enzymes: coupling to neurotransmitter accumulation. In: Gibson G, Dienel G (eds) Handbook of neurochemistry and molecular neurobiology, 3rd edn. Brain energetics, cellular and molecular integration. Springer, Heidelberg, pp 241–259

    Chapter  Google Scholar 

  82. Malinow R, Tsien RW (1990) Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices. Nature 346:177–180

    Article  CAS  PubMed  Google Scholar 

  83. Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  84. Edwards RH (2007) The neurotransmitter cycle and quantal size. Neuron 55:835–858

    Article  CAS  PubMed  Google Scholar 

  85. Wilson NR, Kang J, Hueske EV, Leung T, Varoqui H, Murnick JG, Erickson JD, Liu G (2005) Presynaptic regulation of quantal size by VGLUT1. J Neurosci 25:6221–6234

    Article  CAS  PubMed  Google Scholar 

  86. Nicholls D, Attwell D (1990) The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11:462–468

    Article  PubMed  Google Scholar 

  87. Bole DG, Hirata K, Ueda T (2002) Prolonged depolarization of rat cerebral synaptosomes leads to an increase in vesicular glutamate content. Neurosci Lett 322:17–20

    Article  CAS  PubMed  Google Scholar 

  88. Bradford HF, Ward HK (1976) On glutaminase activity in mammalian synaptosomes. Brain Res 110:115–125

    Article  CAS  PubMed  Google Scholar 

  89. Laake JH, Takumi Y, Eidet J, Torgner IA, Roberg B, Kvamme E, Ottersen OP (1999) Postembedding immunogold labelling reveals subcellular localizationand pathway-specific enrichment of phosphate activated glutaminase in rat cerebellum. Neuroscience 88:1137–1151

    Article  CAS  PubMed  Google Scholar 

  90. Lai JC, Walsh JM, Dennis SC, Clark JB (1977) Synaptic and non-synaptic mitochondria from rat brain: isolation and characterization. J Neurochem 28:625–631

    Article  CAS  PubMed  Google Scholar 

  91. Tildon JT, Roeder LM, Stevenson JH (1985) Substrate oxidation by isolated rat brain mitochondria and synaptosomes. J Neurosci Res 14:207–215

    Article  CAS  PubMed  Google Scholar 

  92. McKenna MC, Tildon JT, Stevenson JH, Boatright R, Huang S (1993) Regulation of energy metabolism in synaptic terminals and cultured rat brain astrocytes: differences revealed using aminooxyacetate. Dev Neurosci 15:320–329

    Article  CAS  PubMed  Google Scholar 

  93. Dennis SC, Land JM, Clark JB (1976) Glutamate metabolism and transport in rat brain mitochondria. Biochem J 156:323–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Michaelis EK, Wang X, Pal R, Bao X, Hascup KN, Wang Y, Wang WT, Hui D, Agbas A, Choi IY, Belousov A, Gerhardt GA (2011) Neuronal Glud1 (glutamate dehydrogenase 1) over-expressing mice: increased glutamate formation and synaptic release, loss of synaptic activity, and adaptive changes in genomic expression. Neurochem Int 59:473–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195:1356–1358

    Article  CAS  PubMed  Google Scholar 

  96. van den Berg CJ, Garfinkel D (1971) A stimulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem J 123:211–218

    Article  PubMed  Google Scholar 

  97. Shank RP, Aprison MH (1981) Present status and significance of the glutamine cycle in neural tissues. Life Sci 28:837–842

    Article  CAS  PubMed  Google Scholar 

  98. Cotman CW, Foster AC, Lanthorn TH (1981) An overview of glutamate as a neurotransmitter. In: Di Chiara G, Gessa GL (eds) Glutamate as a neurotransmitter. Raven Press, New York, pp 1–27

    Google Scholar 

  99. Shank RP, Aprison MH (1988) Glutamate as a neurotransmitter. In: Kvamme E (ed) Glutamine and glutamate in mammals, vol II. CRC Press, Boca Raton, pp 3–20

    Google Scholar 

  100. Kam K, Nicoll R (2007) Excitatory synaptic transmission persists independently of the glutamate-glutamine cycle. J Neurosci 27:9192–9200

    Article  CAS  PubMed  Google Scholar 

  101. Masson J, Darmon M, Conjard A, Chuhma N, Ropert N, Thoby-Brisson M, Foutz AS, Parrot S, Miller GM, Jorisch R, Polan J, Hamon M, Hen R, Rayport S (2006) Mice lacking brain/kidney phosphate-activated glutaminase have impaired glutamatergic synaptic transmission, altered breathing, disorganized goal-directed behavior and die shortly after birth. J Neurosci 26:4660–4671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grant MH 071384 (TU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsufumi Ueda.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest regarding the work reported here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeda, K., Ueda, T. Effective Mechanism for Synthesis of Neurotransmitter Glutamate and its Loading into Synaptic Vesicles. Neurochem Res 42, 64–76 (2017). https://doi.org/10.1007/s11064-016-2037-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2037-3

Keywords

Navigation