Skip to main content

Advertisement

Log in

SOD3 Ameliorates H2O2-Induced Oxidative Damage in SH-SY5Y Cells by Inhibiting the Mitochondrial Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This study was designed to investigate the protective effects of extracellular superoxide dismutase (SOD3) against hydrogen peroxide (H2O2) induced damage in human neuroblastoma SH-SY5Y cells and to elucidate the mechanisms responsible for this beneficial effect. SOD3-overexpressing SH-SY5Y cells were generated by adenoviral vector-mediated infection, and H2O2 was then added into the cell culture system to establish an in vitro model of oxidative stress. Cell viability, the generation of intracellular reactive oxygen species (ROS), the expression and activity of antioxidant enzymes, the levels of lipid peroxidation malondialdehyde (MDA), the expression of mitochondrial apoptosis-related genes, and calcium imaging were examined. Following H2O2 exposure, the over-expression of SOD3 promoted the survival of SH-SY5Y cells; decreased the production of ROS, MDA levels, cytochrome C, caspase-3, caspase-9, and Bax gene expression, and calcium levels; and increased the expression and activity of antioxidant enzyme genes and the expression level of Bcl-2. Together, our data demonstrate that SOD3 ameliorates H2O2-induced oxidative damage in neuroblastoma SH-SY5Y cells by inhibiting the mitochondrial pathway and provide new insights into the functional actions of SOD3 on oxidative stress-induced cell damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract 4:600–609. doi:10.1038/ncpneuro0924

    Article  CAS  Google Scholar 

  2. Behl C (1999) Vitamin E and other antioxidants in neuroprotection. Int J Vitam Nutr Res 69:213–219. doi:10.1024/0300-9831.69.3.213

    Article  CAS  PubMed  Google Scholar 

  3. Finkel T, Holbrool NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247. doi:10.1038/35041687

    Article  CAS  PubMed  Google Scholar 

  4. Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4:118–126. doi:10.4103/0973-7847.70902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Manczak M, Park BS, Jung Y, Reddy PH (2004) Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease: implications for early mitochondrial dysfunction and oxidative damage. NeuroMol Med 5:147–162. doi:10.1385/NMM:5:2:147

    Article  CAS  Google Scholar 

  6. Fukai T, Folz RJ, Landmesser U, Harrison DG (2002) Extracellular superoxide dismutase and cardiovascular disease. Cardiovasc Res 55:239–249. doi:10.1016/S0008-6363(02)00328-0

    Article  CAS  PubMed  Google Scholar 

  7. Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349. doi:10.1016/S0891-5849(02)00905-X

    Article  CAS  PubMed  Google Scholar 

  8. Miao L, St Clair DK (2009) Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 47:344–356. doi:10.1016/j.freeradbiomed.2009.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci CMLS 61:192–208. doi:10.1007/s00018-003-3206-5

    Article  CAS  PubMed  Google Scholar 

  10. Miguel F, Augusto AC, Gurgueira SA (2009) Effect of acute vs chronic H2O2-induced oxidative stress on antioxidant enzyme activities. Free Radical Res 43:340–347. doi:10.1080/10715760902751894

    Article  CAS  Google Scholar 

  11. Fukui M, Zhu BT (2010) Mitochondrial superoxide dismutase SOD2, but not cytosolic SOD1, plays a critical role in protection against glutamate-induced oxidative stress and cell death in HT22 neuronal cells. Free Radic Biol Med 48:821–830. doi:10.1016/j.freeradbiomed.2009.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marklund SL (1984) Extracellular superoxide dismutase in human tissues and human cell lines. J Clin Investig 74:1398–1403. doi:10.1172/JCI111550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Van Rheen Z, Fattman C, Domarski S, Majka S, Klemm D, Stenmark KR, Nozik-Grayck E (2011) Lung extracellular superoxide dismutase overexpression lessens bleomycin-induced pulmonary hypertension and vascular remodeling. Am J Respir Cell Mol Biol 44:500–508. doi:10.1165/rcmb.2010-0065OC

    Article  PubMed  Google Scholar 

  14. Slater AF, Stefan C, Nobel I, van den Dobbelsteen DJ, Orrenius S (1996) Intracellular redox changes during apoptosis. Cell Death Differ 3:57–62

    CAS  PubMed  Google Scholar 

  15. Anderson KM, Seed T, Ou D, Harris JE (1999) Free radicals and reactive oxygen species in programmed cell death. Med Hypotheses 52:451–463. doi:10.1054/mehy.1997.0521

    Article  CAS  PubMed  Google Scholar 

  16. Curtin JF, Donovan M, Cotter TG (2002) Regulation and measurement of oxidative stress in apoptosis. J Immunol Methods 265:49–72. doi:10.1016/S0022-1759(02)00070-4

    Article  CAS  PubMed  Google Scholar 

  17. Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87:1157–1180. doi:10.1007/s00204-013-1034-4

    Article  CAS  PubMed  Google Scholar 

  18. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629. doi:10.1126/science.1099320

    Article  CAS  PubMed  Google Scholar 

  19. Ho YS, Crapo JD (1988) Isolation and characterization of complementary DNAs encoding human manganese-containing superoxide dismutase. FEBS Lett 229:256–260. doi:10.1016/0014-5793(88)81136-0

    Article  CAS  PubMed  Google Scholar 

  20. Kasahara E, Lin LR, Ho YS, Reddy VN (2005) SOD2 protects against oxidation-induced apoptosis in mouse retinal pigment epithelium: implications for age-related macular degeneration. Invest Ophthalmol Vis Sci 46:3426–3434. doi:10.1167/iovs.05-0344

    Article  PubMed  PubMed Central  Google Scholar 

  21. Huang TT, Zou Yani, Corniola Rikki (2012) Oxidative stress and adult neurogenesis–effects of radiation and superoxide dismutase deficiency. Semin Cell Dev Biol 23:738–744. doi:10.1016/j.semcdb.2012.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Soriano ME, Scorrano L (2011) Traveling Bax and forth from mitochondria to control apoptosis. Cell 145:15–17. doi:10.1016/j.cell.2011.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Allan SM, Rothwell NJ (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 2:734–744. doi:10.1038/35094583

    Article  CAS  PubMed  Google Scholar 

  24. Sei Y, Vitkovic L, Yokoyama MM (1995) Cytokines in the central nervous system: regulatory roles in neuronal function, cell death and repair. NeuroImmunoModulation 2:121–133

    Article  CAS  PubMed  Google Scholar 

  25. Kuhn TB (2014) Oxygen radicals elicit paralysis and collapse of spinal cord neuron growth cones upon exposure to proinflammatory cytokines. BioMed Res Int. doi:10.1155/2014/191767

    PubMed  PubMed Central  Google Scholar 

  26. Liochev SI, Fridovich I (2002) The Haber-Weiss cycle—70 years later: an alternative view. Redox Rep Commun Free Radic Res 7:55–57. doi:10.1179/135100002125000190

    Article  CAS  Google Scholar 

  27. von Sonntag C (2008) Advanced oxidation processes: mechanistic aspects. Water Sci Technol 58:1015–1021. doi:10.2166/wst.2008.467

    Article  Google Scholar 

  28. Azmi NH, Ismail N, Imam MU, Ismail M (2013) Ethyl acetate extract of germinated brown rice attenuates hydrogen peroxide-induced oxidative stress in human SH-SY5Y neuroblastoma cells: role of anti-apoptotic, pro-survival and antioxidant genes. BMC Complement Altern Med 13:177–188. doi:10.1186/1472-6882-13-177

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ismail N, Ismail M, Imam MU, Azmi NH, Fathy SF, Foo JB, Abu Bakar MF (2014) Mechanistic basis for protection of differentiated SH-SY5Y cells by oryzanol-rich fraction against hydrogen peroxide-induced neurotoxicity. BMC Complement Altern Med 14:467–478. doi:10.1186/1472-6882-14-467

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stefanova NA, Kozhevnikova OS, Vitovtov AO, Maksimova KY, Logvinov SV, Rudnitskaya EA, Korbolina EE, Muraleva NA, Kolosova NG (2014) Senescence-accelerated OXYS rats: a model of age-related cognitive decline with relevance to abnormalities in Alzheimer disease. Cell Cycle 13:898–909. doi:10.4161/cc.28255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rusnak F, Mertz P (2000) Calcineurin: form and function. Physiol Rev 80:1483–1521

    CAS  PubMed  Google Scholar 

  32. Holley AK, Dhar SK, St Clair DK (2010) Manganese superoxide dismutase versus p53: the mitochondrial center. Ann N Y Acad Sci 1201:72–78. doi:10.1111/j.1749-6632.2010.05612.x

    Article  CAS  PubMed  Google Scholar 

  33. Przedborski S, Kostic V, Jackson-Lewis V, Naini AB, Simonetti S, Fahn S, Carlson E, Epstein CJ, Cadet JL (1992) Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J Neurosci 12:1658–1667

    CAS  PubMed  Google Scholar 

  34. Mondola P, Annella T, Santillo M et al (1996) Evidence for secretion of cytosolic CuZn superoxide dismutase by Hep G2 cells and human fibroblasts. Int J Biochem Cell Biol 28:677–681. doi:10.1016/1357-2725(96)00004-0

    Article  CAS  PubMed  Google Scholar 

  35. Mondola P, Ruggiero G, Serù R, Damiano S et al (2003) The Cu, Zn superoxide dismutase in neuroblastoma SK-N-BE cells is exported by a microvesicles dependent pathway. Brain Res Mol Brain Res 110:45–51. doi:10.1016/S0169-328X(02)00583-1

    Article  CAS  PubMed  Google Scholar 

  36. Baines CP (2010) Role of the mitochondrion in programmed necrosis. Front Physiol 1:156. doi:10.3389/fphys.2010.00156

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ebenezer PJ, Weidner AM, LeVine H 3rd, Markesbery WR et al (2010) Neuron specific toxicity of oligomeric amyloid-beta: role for JUN-kinase and oxidative stress. J Alzheimer’s Dis JAD 22:839–848. doi:10.3233/JAD-2010-101161

    CAS  PubMed  Google Scholar 

  38. Zhang L, Wei S, Tang JM, Guo LY et al (2013) PEP-1-CAT protects hypoxia/reoxygenation-induced cardiomyocyte apoptosis through multiple sigaling pathways. J Transl Med 11:113. doi:10.1186/1479-5876-11-113

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yan MH, Wang X, Zhu X (2013) Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med 62:90–101. doi:10.1016/j.freeradbiomed.2012.11.014

    Article  CAS  PubMed  Google Scholar 

  40. Zhang JQ, Shen M, Zhu CC, Yu FX, Liu ZQ, Ally N, Sun SC, Li K, Liu HL (2014) 3-Nitropropionic acid induces ovarian oxidative stress and impairs follicle in mouse. PLoS ONE 9:e86589. doi:10.1371/journal.pone.0086589

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liochev SI (2013) Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med 60:1–4. doi:10.1016/j.freeradbiomed.2013.02.011

    Article  CAS  PubMed  Google Scholar 

  42. Chaudhari N, Talwar P, Parimisetty A, Lefebvre d’ Hellencourt C, Ravanan P (2014) A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci 8:213. doi:10.3389/fncel.2014.00213

    Article  PubMed  PubMed Central  Google Scholar 

  43. Paulsen Bda S, de Moraes Maciel R, Galina A, Souza da Silveira M, dos Santos Souza C, Drummond H, Nascimento Pozzatto E, Silva H Jr, Chicaybam L, Massuda R, Setti-Perdigão P, Bonamino M, Belmonte-de-Abreu PS, Castro NG, Brentani H, Rehen SK (2012) Altered oxygen metabolism associated to neurogenesis of induced pluripotent stem cells derived from a schizophrenic patient. Cell Transp 21:1547–1559. doi:10.3727/096368911X600957

    Article  Google Scholar 

  44. Mattson MP (2007) Calcium and neurodegeneration. Aging Cell 6:337–350. doi:10.1111/j.1474-9726.2007.00275.x

    Article  CAS  PubMed  Google Scholar 

  45. Khachaturian ZS (1987) Hypothesis on the regulation of cytosol calcium concentration and the aging brain. Neurobiol Aging 8:345–346. doi:10.1016/0197-4580(87)90073-X

    Article  CAS  PubMed  Google Scholar 

  46. LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3:862–872. doi:10.1038/nrn960

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported mainly by the Chongqing Science and Technology Committee Fund for Cutting-Edge Research Projects (CSTC2014JCYJA10014) and a grant from the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ130320). It was also partially supported by grants from the National Natural Science Foundation of China (NSFC Grant Numbers 81001220 and 81370077), and the Fundamental Research Funds for nonprofit public scientific research institutions of Chongqing from Chongqing Science and Technology Commission (Grant no. 2015CSTC-JBKY-01702).

Author Contributions

HY. and H.R.Y. designed this study; R.Y., L.W., Q.Q.F., and H.W. performed the experiments; R.Y. analyzed the data; R.Y. and H.Y. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua You or Hua-Rong Yu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Rong Yang and Li Wei have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Wei, L., Fu, QQ. et al. SOD3 Ameliorates H2O2-Induced Oxidative Damage in SH-SY5Y Cells by Inhibiting the Mitochondrial Pathway. Neurochem Res 41, 1818–1830 (2016). https://doi.org/10.1007/s11064-016-1897-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1897-x

Keywords

Navigation