Skip to main content
Log in

SIRT3 Acts as a Neuroprotective Agent in Rotenone-Induced Parkinson Cell Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

SIRT3 is a member of Sirtuins family, which belongs to NAD+ dependent class III histone deacetylases. Emerging evidence suggests that SIRT3 plays a pivotal role in regulating mitochondrial function. Mitochondrial dysfunction is a main pathogenesis of Parkinson’s disease (PD). Here, we have investigated the protective effect of SIRT3 for PD cell model. The rotenone-induced human neuroblastoma SH-SY5Y cells damage was used as PD cell model. The lentiviral vectors were used to over-expression or knockdown SIRT3 expression. The cell viability was analyzed using MTT method. The apoptosis, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were measured by flow cytometer. Superoxide dismutase (SOD) and glutathione (GSH) were detected by using automated microplate reader. The accumulation of α-synuclein was determined by immunofluorescence staining. SIRT3 knockdown significantly worsen rotenone-induced decline of cell viability (p < 0.01) and enhanced cell apoptosis (p < 0.01), exacerbated the decrease of SOD (p < 0.05) and GSH (p < 0.05), and augmented the accumulation of α-synuclein (p < 0.05). While SIRT3 overexpression dramatically increased cell viability (p < 0.01), and decreased cell apoptosis (p < 0.01), prevented the accumulation of α-synuclein (p < 0.05), suppressed the reducing of SOD (p < 0.05) and GSH (p < 0.01), decreased ROS generation (p < 0.05), and alleviated MMP collapse (p < 0.01) induced by rotenone. SIRT3 has neuroprotective effect in PD cell model and could be developed into a therapeutic agent for PD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Meissner WG, Frasier M, Gasser T, Goetz CG, Lozano A, Piccini P, Obeso JA, Rascol O, Schapira A, Voon V, Weiner DM, Tison F, Bezard E (2011) Priorities in Parkinson’s disease research. Nat Rev Drug Discov 10:377–393

    Article  CAS  PubMed  Google Scholar 

  2. Samii A, Nutt JG, Ransom BR (2004) Parkinson’s disease. Lancet 363:1783–1793

    Article  CAS  PubMed  Google Scholar 

  3. Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, Barbour R, Huang J, Kling K, Lee M, Diep L, Keim PS, Shen X, Chataway T, Schlossmacher MG, Seubert P, Schenk D, Sinha S, Gai WP, Chilcote TJ (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281:29739–29752

    Article  CAS  PubMed  Google Scholar 

  4. Mosley RL, Hutter-Saunders JA, Stone DK, Gendelman HE (2012) Inflammation and adaptive immunity in Parkinson’s disease. Cold Spring Harbor Perspect Med 2:a009381

    Article  Google Scholar 

  5. Jellinger KA (2014) The pathomechanisms underlying Parkinson’s disease. Expert Rev Neurother 14:199–215

    Article  CAS  PubMed  Google Scholar 

  6. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  PubMed  Google Scholar 

  7. Pringsheim T, Jette N, Frolkis A, Steeves TD (2014) The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 29:1583–1590

    Article  PubMed  Google Scholar 

  8. Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408:255–262

    Article  CAS  PubMed  Google Scholar 

  9. North BJ, Verdin E (2004) Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol 5:224

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen D, Guarente L (2007) SIR2: a potential target for calorie restriction mimetics. Trends Mol Med 13:64–71

    Article  CAS  PubMed  Google Scholar 

  11. Klar AJ, Fogel S (1979) Activation of mating type genes by transposition in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 76:4539–4543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Park S, Mori R, Shimokawa I (2013) Do sirtuins promote mammalian longevity? A critical review on its relevance to the longevity effect induced by calorie restriction. Mol Cells 35:474–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Imai S, Guarente L (2014) NAD+ and sirtuins in aging and disease. Trends Cell Biol 24:464–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Driver JA, Logroscino G, Gaziano JM, Kurth T (2009) Incidence and remaining lifetime risk of Parkinson disease in advanced age. Neurology 72:432–438

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137–148

    Article  CAS  PubMed  Google Scholar 

  17. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, de Oliveira RM, Leid M, McBurney MW, Guarente L (2004) Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma (vol 429, p 771, 2004). Nature 430:921

    Article  CAS  Google Scholar 

  18. Kincaid B, Bossy-Wetzel E (2013) Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Front Aging Neurosci 5:48

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bause AS, Haigis MC (2013) SIRT3 regulation of mitochondrial oxidative stress. Exp Gerontol 48:634–639

    Article  CAS  PubMed  Google Scholar 

  20. Sack MN (2012) The role of SIRT3 in mitochondrial homeostasis and cardiac adaptation to hypertrophy and aging. J Mol Cell Cardiol 52:520–525

    Article  CAS  PubMed  Google Scholar 

  21. Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, Tanokura M, Denu JM, Prolla TA (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143:802–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bell EL, Guarente L (2011) The SirT3 divining rod points to oxidative stress. Mol Cell 42:561–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rose G, Dato S, Altomare K, Bellizzi D, Garasto S, Greco V, Passarino G, Feraco E, Mari V, Barbi C, BonaFe M, Franceschi C, Tan Q, Boiko S, Yashin AI, De Benedictis G (2003) Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol 38:1065–1070

    Article  CAS  PubMed  Google Scholar 

  24. McDonnell E, Peterson BS, Bomze HM, Hirschey MD (2015) SIRT3 regulates progression and development of diseases of aging. Trends Endocrinol Metab 26:486–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lombard DB, Zwaans BM (2014) SIRT3: As simple as it seems? Gerontology 60:56–64

    Article  CAS  PubMed  Google Scholar 

  26. Han P, Tang Z, Yin J, Maalouf M, Beach TG, Reiman EM, Shi J (2014) Pituitary adenylate cyclase-activating polypeptide protects against beta-amyloid toxicity. Neurobiol Aging 35:2064–2071

    Article  CAS  PubMed  Google Scholar 

  27. Kim SH, Lu HF, Alano CC (2011) Neuronal Sirt3 protects against excitotoxic injury in mouse cortical neuron culture. PLoS One 6:e14731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fu J, Jin J, Cichewicz RH, Hageman SA, Ellis TK, Xiang L, Peng Q, Jiang M, Arbez N, Hotaling K, Ross CA, Duan W (2012) trans-(-)-epsilon-Viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington disease. J Biol Chem 287:24460–24472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Song W, Song Y, Kincaid B, Bossy B, Bossy-Wetzel E (2013) Mutant SOD1G93A triggers mitochondrial fragmentation in spinal cord motor neurons: neuroprotection by SIRT3 and PGC-1alpha. Neurobiol Dis 51:72–81

    Article  CAS  PubMed  Google Scholar 

  30. Liu L, Peritore C, Ginsberg J, Kayhan M, Donmez G (2015) SIRT3 attenuates MPTP-induced nigrostriatal degeneration via enhancing mitochondrial antioxidant capacity. Neurochem Res 40:600–608

    Article  CAS  PubMed  Google Scholar 

  31. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    Article  CAS  PubMed  Google Scholar 

  32. Degli Esposti M (1998) Inhibitors of NADH-ubiquinone reductase: an overview. Biochim Biophys Acta 1364:222–235

    Article  CAS  PubMed  Google Scholar 

  33. Talpade DJ, Greene JG, Higgins DS Jr, Greenamyre JT (2000) In vivo labeling of mitochondrial complex I (NADH: ubiquinone oxidoreductase) in rat brain using [(3)H]dihydrorotenone. J Neurochem 75:2611–2621

    Article  CAS  PubMed  Google Scholar 

  34. Mader BJ, Pivtoraiko VN, Flippo HM, Klocke BJ, Roth KA, Mangieri LR, Shacka JJ (2012) Rotenone inhibits autophagic flux prior to inducing cell death. ACS Chem Neurosci 3:1063–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weir HJM, Murray TK, Kehoe PG, Love S, Verdin EM, O’Neill MJ, Lane JD, Balthasar N (2012) CNS SIRT3 expression is altered by reactive oxygen species and in Alzheimer’s disease. PLoS One 7:e48225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lansbury PT, Lashuel HA (2006) A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443:774–779

    Article  CAS  PubMed  Google Scholar 

  37. Mullin S, Schapira A (2013) alpha-Synuclein and mitochondrial dysfunction in Parkinson’s disease. Mol Neurobiol 47:587–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  CAS  PubMed  Google Scholar 

  39. Winklhofer KF, Tatzelt J, Haass C (2008) The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J 27:336–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hauser DN, Hastings TG (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis 51:35–42

    Article  CAS  PubMed  Google Scholar 

  41. Niranjan R (2013) The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson’s disease: focus on astrocytes. Mol Neurobiol 49:28–38

    Article  PubMed  Google Scholar 

  42. Du L, Zhang X, Han YY, Burke NA, Kochanek PM, Watkins SC, Graham SH, Carcillo JA, Szabo C, Clark RS (2003) Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress. J Biol Chem 278:18426–18433

    Article  CAS  PubMed  Google Scholar 

  43. Shi T, Wang F, Stieren E, Tong Q (2005) SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 280:13560–13567

    Article  CAS  PubMed  Google Scholar 

  44. Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 119:2758–2771

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP (2008) SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol 28:6384–6401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD, van der Meer R, Nguyen P, Savage J, Owens KM, Vassilopoulos A, Ozden O, Park SH, Singh KK, Abdulkadir SA, Spitz DR, Deng CX, Gius D (2010) SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17:41–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qiu X, Brown K, Hirschey MD, Verdin E, Chen D (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12:662–667

    Article  CAS  PubMed  Google Scholar 

  48. Tao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H, Kim HS, Flynn CR, Hill S, Hayes McDonald W, Olivier AK, Spitz DR, Gius D (2010) Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 40:893–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dumont M, Beal MF (2011) Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic Biol Med 51:1014–1026

    Article  CAS  PubMed  Google Scholar 

  50. Yan MH, Wang X, Zhu X (2013) Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med 62:90–101

    Article  CAS  PubMed  Google Scholar 

  51. Gautier CA, Corti O, Brice A (2013) Mitochondrial dysfunctions in Parkinson’s disease. Rev Neurol 170:339–343

    Article  PubMed  Google Scholar 

  52. Schapira AH, Jenner P (2011) Etiology and pathogenesis of Parkinson’s disease. Mov Disord 26:1049–1055

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China to Yong-Ning Deng (No. 81301097) and by grants to H. Su from the National Institutes of Health (R01 NS027713, R01 HL122774 and R21 NS083788), and Michael Ryan Zodda Foundation and the UCSF Research Evaluation and Allocation Committee (REAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiu-Min Qu.

Additional information

Jing-Yi Zhang and Yong-Ning Deng have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JY., Deng, YN., Zhang, M. et al. SIRT3 Acts as a Neuroprotective Agent in Rotenone-Induced Parkinson Cell Model. Neurochem Res 41, 1761–1773 (2016). https://doi.org/10.1007/s11064-016-1892-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1892-2

Keywords

Navigation