Skip to main content
Log in

Effect of Liraglutide on Corneal Kindling Epilepsy Induced Depression and Cognitive Impairment in Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

GLP-1 play important role in neuroprotection and GLP-1 receptor deficit mice showed decreased seizure threshold and increased cognitive impairment. Therefore, study was premeditated to investigate the effect of liraglutide (GLP-1 analogue) on cornel kindling epilepsy induced co-morbidities in mice. Corneal kindling was induced by electrical stimulation (6 mA, 50 Hz, 3 s); twice daily for 13 days. Liraglutide (75 and 150 µg/kg) and phenytoin (20 mg/kg) were administered in corneal kindled groups. On day 14, elevated plus maze, passive shock avoidance paradigms were performed, and on day 15, retention was taken. On day 16 tail suspension test were performed. On 20th day challenge test was performed with same electrical stimulation and retention was observed on elevated plus maze and passive avoidance paradigm. Animal were sacrificed on 21st day for biochemical (LPO, GSH, and nitrite) and neurochemical (GABA, glutamate, DA, NE, 5-HT and their metabolites) estimation. Electrical stimulation by corneal electrode for 13 days developed generalized clonic seizures, increased cognitive impairment, oxidative stress and neurochemical alteration in mice brain. Co-treatment with liraglutide (75 and 150 μg/kg) significantly prevented the seizure severity, restored behavioural activity, oxidative stress and restored the altered level of neurotransmitters observed in corneal kindled mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CA:

Corpus ammonis

DA:

Dopamine

DOPAC:

3,4-Dihydroxyphenylacetic acid

GLP-1:

Glucagon like peptide-1

GLP-1Rs:

Glucagon like peptide-1 receptors

HVA:

Homovanillic acid

NE:

Norepinephrine

5-HIAA:

5-Hydroxyindoleacetic acid

References

  1. Gan J, Qu Y, Li J, Zhao F, Mu D (2015) An evaluation of the links between micro RNA, autophagy, and epilepsy. Rev Neurosci 26:225–237

    Article  CAS  PubMed  Google Scholar 

  2. Reddy DS, Kuruba R (2013) Experimental models of status epilepticus and neuronal injury for evaluation of therapeutic interventions. Int J Mol Sci 14:18284–18318

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bhalla D, Tchalla AE, Marin B, Ngoungou EB, Tan CT, Preux PM (2014) Epilepsy: Asia versus Africa. Epilepsia 55:1317–1321

    Article  PubMed  Google Scholar 

  4. Huang H, Zhou H, Wang N (2015) Recent advances in epilepsy management. Cell Biochem Biophys 73:7–10

    Article  CAS  PubMed  Google Scholar 

  5. Sendrowski K, Sobaniec W (2013) Hippocampus, hippocampal sclerosis and epilepsy. Pharmacol Rep 65:555–565

    Article  CAS  PubMed  Google Scholar 

  6. Nieoczym D, Albera E, Kankofer M, Wlaź P (2008) Maximal electroshock induces changes in some markers of oxidative stress in mice. J Neural Transm (Vienna) 115:19–25

    Article  CAS  Google Scholar 

  7. Sehar N, Agarwal NB, Vohora D, Raisuddin S (2015) Atorvastatin prevents development of kindling by modulating hippocampal levels of dopamine, glutamate, and GABA in mice. Epilepsy Behav 42:48–53

    Article  PubMed  Google Scholar 

  8. Clinckers R, Smolders I, Meurs A, Ebinger G, Michotte Y (2005) Hippocampal dopamine and serotonin elevations as pharmacodynamic markers for the anticonvulsant efficacy of oxcarbazepine and 10, 11-dihydro-10-hydroxycarbamazepine. Neurosci Lett 390:48–53

    Article  CAS  PubMed  Google Scholar 

  9. Epps SA, Tabb KD, Lin SJ, Kahn AB, Javors MA, Boss-Williams KA, Weiss JM, Weinshenker D (2012) Seizure susceptibility and epileptogenesis in a rat model of epilepsy and depression co-morbidity. Neuropsychopharmacology 37:2756–2763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choudhary KM, Mishra A, Poroikov VV, Goel RK (2013) Ameliorative effect of Curcumin on seizure severity, depression like behavior, learning and memory deficit in post-pentylenetetrazole-kindled mice. Eur J Pharmacol 704:33–40

    Article  CAS  PubMed  Google Scholar 

  11. McIntyre RS, Powell AM, Kaidanovich-Beilin O, Soczynska JK, Alsuwaidan M, Woldeyohannes HO, Kim AS, Gallaugher LA (2013) The neuroprotective effects of GLP-1: possible treatments for cognitive deficits in individuals with mood disorders. Behav Brain Res 237:164–171

    Article  CAS  PubMed  Google Scholar 

  12. Harkavyi A, Whitton PS (2010) Glucagon-like peptide 1 receptor stimulation as a means of neuroprotection. Br J Pharmacol 159:495–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vilsboll T (2009) The effects of glucagon-like peptide-1 on the beta cell. Diabetes Obes Metab 11:11–18

    Article  PubMed  Google Scholar 

  14. Peters KR (2013) Liraglutide for the treatment of type 2 diabetes: a clinical update. Am J Ther 20:178–188

    Article  PubMed  Google Scholar 

  15. Hölscher C (2014) Central effects of GLP-1: new opportunities for treatments of neurodegenerative diseases. J Endocrinol 221:T31–T41

    Article  PubMed  Google Scholar 

  16. Sharma MK, Jalewa J, Holscher C (2014) Neuroprotective and anti-apoptotic effects of liraglutide on SH-SY5Y cells exposed to methylglyoxal stress. J Neurochem 128:459–471

    Article  CAS  PubMed  Google Scholar 

  17. Potschka H, Löscher W (1999) Corneal kindling in mice: behavioral and pharmacological differences to conventional kindling. Epilepsy Res 37:109–120

    Article  CAS  PubMed  Google Scholar 

  18. McIntyre RS, Powell AM, Kaidanovich-Beilin O, Soczynska JK, Alsuwaidan M, Woldeyohannes HO, Kim AS, Gallaugher LA (2009) GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 58:975–983

    Article  Google Scholar 

  19. Nonogaki K, Hazama M, Satoh N (2014) Liraglutide suppresses obesity and hyperglycemia associated with increases in hepatic fibroblast growth factor 21 production in KKA y mice. Biomed Res Int 2014:1–8

    Article  Google Scholar 

  20. Sharma AC, Kulkarni SK (1992) Evaluation of learning and memory mechanisms employing elevated plus-maze in rats and mice. Prog Neuropsychopharmacol Biol Psychiatry 16:117–125

    Article  CAS  PubMed  Google Scholar 

  21. Blatt S, Takahashi R (1998) Memory-impairing effects of local anesthetics in an elevated plus-maze test in mice. Braz J Med Biol Res 31:555–559

    Article  CAS  PubMed  Google Scholar 

  22. Sharma AC, Kulkarni SK (1990) Evidence for GABA-BZ receptor modulation of short term memory passive avoidance task paradigm in mice. Methods Find Exp Clin Pharmacol 12:175–180

    CAS  PubMed  Google Scholar 

  23. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    Article  CAS  PubMed  Google Scholar 

  24. Dhir A, Kulkarni S (2008) Involvement of sigma (σ1) receptors in modulating the anti-depressant effect of neurosteroids (dehydroepiandrosterone or pregnenolone) in mouse tail-suspension test. J Psychopharmacol 22:691–696

    Article  CAS  PubMed  Google Scholar 

  25. Kumar P, Kalonia H, Kumar A (2011) Role of LOX/COX pathways in 3-nitropropionic acid-induced Huntington’s Disease-like symptoms in rats: protective effect of licofelone. Br J Pharmacol 164:644–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wills E (1966) Mechanisms of lipid peroxide formation in animal tissues. Biochem J 99:667–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15 N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  28. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  29. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  30. Jamwal S, Singh S, Kaur N, Kumar P (2015) Protective effect of spermidine against excitotoxic neuronal death induced by quinolinic acid in rats: possible neurotransmitters and neuroinflammatory mechanism. Neurotox Res 28:171–184

    Article  CAS  PubMed  Google Scholar 

  31. Donzanti BA, Yamamoto BK (1988) An improved and rapid HPLC-EC method for the isocratic separation of amino acid neurotransmitters from brain tissue and microdialysis perfusates. Life Sci 43:913–922

    Article  CAS  PubMed  Google Scholar 

  32. Leclercq K, Matagne A, Kaminski R (2014) Low potency and limited efficacy of antiepileptic drugs in the mouse 6 Hz corneal kindling model. Epilepsy Res 108:675–683

    Article  CAS  PubMed  Google Scholar 

  33. Sutula TP (1990) Progressive neuronal loss induced by kindling: a possible mechanism for mossy fiber synaptic reorganization and hippocampal sclerosis. Brain Res 527:1–6

    Article  PubMed  Google Scholar 

  34. Lamont SR, Paulls A, Stewart CA (2001) Repeated electroconvulsive stimulation, but not antidepressant drugs, induces mossy fibre sprouting in the rat hippocampus. Brain Res 893:53–58

    Article  CAS  PubMed  Google Scholar 

  35. Kandratavicius L, Alves Balista P, Lopes-Aguiar C, Naime Ruggiero R, Henrique Umeoka E, Garcia-Cairasco N, Soares Bueno-Junior L, Pereira Leite J (2014) Animal models of epilepsy: use and limitations. Neuropsychiatr Dis Treat 10:1693

    Article  PubMed  PubMed Central  Google Scholar 

  36. Aguiar CC, Almeida AB, Araújo PV, Abreu RN, Chaves EM, Vale OC, Macêdo DS, Woods DJ, Fonteles MM, Vasconcelos SM (2012) Oxidative stress and epilepsy: literature review. Oxid Med Cell Longev 2012:1–12

    Article  Google Scholar 

  37. Singh D, Mishra A, Goel RK (2013) Effect of saponin fraction from Ficus religiosa on memory deficit, and behavioral and biochemical impairments in pentylenetetrazol kindled mice. Epilepsy Behav 27:206–211

    Article  PubMed  Google Scholar 

  38. Pozdeev V, Gracheva G, Il’in A (1984) Effect of electrical stimulation in the kindling regimen on brain mediator systems in rats. Fiziol Zhurnal SSSR Imeni IM Sechenova 70:944–951

    CAS  Google Scholar 

  39. Bozzi Y, Borrelli E (2013) The role of dopamine signaling in epileptogenesis. Front Cell Neurosci 2013:7

    Google Scholar 

  40. Weinshenker D, Szot P (2002) The role of catecholamines in seizure susceptibility: new results using genetically engineered mice. Pharmacol Ther 94:213–233

    Article  CAS  PubMed  Google Scholar 

  41. Sankar R, Mazarati A (2010) Neurobiology of depression as a comorbidity of epilepsy. Epilepsia 51:81

    Article  PubMed  PubMed Central  Google Scholar 

  42. Goldenberg MM (2010) Overview of drugs used for epilepsy and seizures: etiology, diagnosis, and treatment. Pharm Ther 35:392–415

    Google Scholar 

  43. Wlaz P, Potschka H, Löscher W (1998) Frontal versus transcorneal stimulation to induce maximal electroshock seizures or kindling in mice and rats. Epilepsy Res 30:219–229

    Article  CAS  PubMed  Google Scholar 

  44. Merchenthaler I, Lane M, Shughrue P (1999) Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol 403:261–280

    Article  CAS  PubMed  Google Scholar 

  45. During MJ, Cao L, Zuzga DS, Francis JS, Fitzsimons HL, Jiao X, Bland RJ, Klugmann M, Banks WA, Drucker DJ, Haile CN (2003) Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med 9:1173–1179

    Article  CAS  PubMed  Google Scholar 

  46. Mossello E, Ballini E, Boncinelli M, Monami M, Lonetto G, Mello AM, Tarantini F, Baldasseroni S, Mannucci E, Marchionni N (2011) Glucagon-like peptide-1, diabetes, and cognitive decline: possible pathophysiological links and therapeutic opportunities. Exp Diabetes Res 2011:1–6

    Article  Google Scholar 

  47. Klöckner U, Itagaki K, Bodi I, Schwartz A (1992) β-Subunit expression is required for cAMP-dependent increase of cloned cardiac and vascular calcium channel currents. Pflügers Arch 420:413–415

    Article  PubMed  Google Scholar 

  48. Gilman CP, Perry T, Furukawa K, Grieg NH, Egan JM, Mattson MP (2003) Glucagon-like peptide-1 modulates calcium responses to glutamate and membrane depolarization in hippocampal neurons. J Neurochem 87:1137–1144

    Article  CAS  PubMed  Google Scholar 

  49. Li Y, Perry T, Kindy MS, Harvey BK, Tweedie D, Holloway HW, Powers K, Shen H, Egan JM, Sambamurti K, Brossi A (2009) GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc Natl Acad Sci USA 106:1285–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brunetti L, Orlando G, Recinella L, Leone S, Ferrante C, Chiavaroli A, Lazzarin F, Vacca M (2008) Glucagon-like peptide 1 (7–36) amide (GLP-1) and exendin-4 stimulate serotonin release in rat hypothalamus. Peptides 29:1377–1381

    Article  CAS  PubMed  Google Scholar 

  51. Lerche S, Soendergaard L, Rungby J, Moeller N, Holst JJ, Schmitz OE, Brock B (2009) No increased risk of hypoglycaemic episodes during 48 h of subcutaneous glucagon‐like‐peptide‐1 administration in fasting healthy subjects Clin Endocrinol (Oxf) 71:500–506

  52. Korol SV, Jin Z, Babateen O, Birnir B (2015) GLP-1 and exendin-4 transiently enhance GABAA receptor-mediated synaptic and tonic currents in rat hippocampal CA3 pyramidal neurons. Diabetes 64:79–89

    Article  CAS  PubMed  Google Scholar 

  53. Hunter K, Hölscher C (2012) Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci 13:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Han W-N, Hölscher C, Yuan L, Yang W, Wang X-H, Wu M-N et al (2013) Liraglutide protects against amyloid-β protein-induced impairment of spatial learning and memory in rats. Neurobiol Aging 34:576–588

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koshal, P., Kumar, P. Effect of Liraglutide on Corneal Kindling Epilepsy Induced Depression and Cognitive Impairment in Mice. Neurochem Res 41, 1741–1750 (2016). https://doi.org/10.1007/s11064-016-1890-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1890-4

Keywords

Navigation