Skip to main content

Advertisement

Log in

The Neuroprotective Effects of Justicidin A on Amyloid Beta25–35-Induced Neuronal Cell Death Through Inhibition of Tau Hyperphosphorylation and Induction of Autophagy in SH-SY5Y Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Justicidin A is a structurally defined arylnaphthalide lignan, which has been shown anti-cancer activity; however, the neuroprotective effect of justicidin A is still untested. In this study, we investigated the action of justicidin A on amyloid beta (Aβ)25–35-induced neuronal cell death via inhibition of the hyperphosphorylation of tau and induction of autophagy in SH-SY5Y cells. Pretreatment with justicidin A significantly elevated cell viability in cells treated with Aβ25–35. Western blot data demonstrated that justicidin A inhibited the Aβ25–35-induced up-regulation the levels of hyperphosphorylation of tau in SH-SY5Y cells. In addition, treatment with justicidin A significantly induced autophagy as measured by the increasing LC3 II/I ratio, an important autophagy marker. These studies showed that justicidin A inhibited activity of glycogen synthase kinase-3beta (GSK-3β), which is an important kinase in up-stream signaling pathways; inhibited hyperphosphorylation of tau in AD; and enhanced activity of AMP-activated protein kinase (AMPK), which is the key molecule for both hyperphosphorylation of tau and induction of autophagy. These data provide the first evidence that justicidin A protects SH-SY5Y cells from Aβ25–35-induced neuronal cell death through inhibition of hyperphosphorylation of tau and induction of autophagy via regulation the activity of GSK-3β and AMPK, and they also provide some insights into the relationship between tau protein hyperphosphorylation and autophagy. Thus, we conclude that justicidin A may have a potential role for neuroprotection and, therefore, may be used as a therapeutic agent for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Holscher C (2005) Development of beta-amyloid-induced neurodegeneration in Alzheimer’s disease and novel neuroprotective strategies. Rev Neurosci 16(3):181–212

    Article  CAS  PubMed  Google Scholar 

  2. Yoon S-S, AhnJo S-M (2012) Mechanisms of amyloid-β peptide clearance: potential therapeutic targets for Alzheimer’s disease. Biomol Ther 20(3):245–255. doi:10.4062/biomolther.2012.20.3.245

    Article  CAS  Google Scholar 

  3. Su CL, Huang LL, Huang LM, Lee JC, Lin CN, Won SJ (2006) Caspase-8 acts as a key upstream executor of mitochondria during justicidin A-induced apoptosis in human hepatoma cells. FEBS Lett 580(13):3185–3191. doi:10.1016/j.febslet.2006.04.085

    Article  CAS  PubMed  Google Scholar 

  4. Won SJ, Yen CH, Liu HS, Wu SY, Lan SH, Jiang-Shieh YF, Lin CN, Su CL (2015) Justicidin A-induced autophagy flux enhances apoptosis of human colorectal cancer cells via class III PI3K and Atg5 pathway. J Cell Physiol 230(4):930–946. doi:10.1002/jcp.24825

    Article  CAS  PubMed  Google Scholar 

  5. Funderburk SF, Marcellino BK, Yue Z (2010) Cell “self-eating” (autophagy) mechanism in Alzheimer’s disease. Mt Sinai J Med 77(1):59–68. doi:10.1002/msj.20161

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hollenbeck PJ (1993) Products of endocytosis and autophagy are retrieved from axons by regulated retrograde organelle transport. J Cell Biol 121(2):305–315

    Article  CAS  PubMed  Google Scholar 

  7. Zeng KW, Ko H, Yang HO, Wang XM (2010) Icariin attenuates beta-amyloid-induced neurotoxicity by inhibition of tau protein hyperphosphorylation in PC12 cells. Neuropharmacology 59(6):542–550. doi:10.1016/j.neuropharm.2010.07.020

    Article  CAS  PubMed  Google Scholar 

  8. Wang J, Tung YC, Wang Y, Li XT, Iqbal K, Grundke-Iqbal I (2001) Hyperphosphorylation and accumulation of neurofilament proteins in Alzheimer disease brain and in okadaic acid-treated SY5Y cells. FEBS Lett 507(1):81–87

    Article  CAS  PubMed  Google Scholar 

  9. Harris KA, Oyler GA, Doolittle GM, Vincent I, Lehman RA, Kincaid RL, Billingsley ML (1993) Okadaic acid induces hyperphosphorylated forms of tau protein in human brain slices. Ann Neurol 33(1):77–87. doi:10.1002/ana.410330113

    Article  CAS  PubMed  Google Scholar 

  10. Greco SJ, Sarkar S, Casadesus G, Zhu X, Smith MA, Ashford JW, Johnston JM, Tezapsidis N (2009) Leptin inhibits glycogen synthase kinase-3beta to prevent tau phosphorylation in neuronal cells. Neurosci Lett 455(3):191–194. doi:10.1016/j.neulet.2009.03.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lage R, Diéguez C, Vidal-Puig A, López M (2008) AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol Med 14(12):539–549. doi:10.1016/j.molmed.2008.09.007

    Article  CAS  PubMed  Google Scholar 

  12. Lippai M, Lőw P (2014) The role of the selective adaptor p62 and ubiquitin-like proteins in autophagy. BioMed Res Int 2014:11. doi:10.1155/2014/832704

    Article  Google Scholar 

  13. Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, Ong CN, Codogno P, Shen HM (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 285(14):10850–10861. doi:10.1074/jbc.M109.080796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li YP, Bushnell AF, Lee CM, Perlmutter LS, Wong SK (1996) Beta-amyloid induces apoptosis in human-derived neurotypic SH-SY5Y cells. Brain Res 738(2):196–204

    Article  CAS  PubMed  Google Scholar 

  15. Datki Z, Papp R, Zadori D, Soos K, Fulop L, Juhasz A, Laskay G, Hetenyi C, Mihalik E, Zarandi M, Penke B (2004) In vitro model of neurotoxicity of Abeta 1–42 and neuroprotection by a pentapeptide: irreversible events during the first hour. Neurobiol Dis 17(3):507–515. doi:10.1016/j.nbd.2004.08.007

    Article  CAS  PubMed  Google Scholar 

  16. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3(4):519–526

    Article  CAS  PubMed  Google Scholar 

  17. Kimura T, Ono T, Takamatsu J, Yamamoto H, Ikegami K, Kondo A, Hasegawa M, Ihara Y, Miyamoto E, Miyakawa T (1996) Sequential changes of tau-site-specific phosphorylation during development of paired helical filaments. Dement Geriatr Cogn Disord 7(4):177–181

    Article  CAS  Google Scholar 

  18. Ma QL, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ, Chen PP, Hudspeth B, Chen C, Zhao Y, Vinters HV, Frautschy SA, Cole GM (2009) Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 29(28):9078–9089. doi:10.1523/jneurosci.1071-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zempel H, Thies E, Mandelkow E, Mandelkow EM (2010) Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci 30(36):11938–11950. doi:10.1523/jneurosci.2357-10.2010

    Article  CAS  PubMed  Google Scholar 

  20. Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ (2011) Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci USA 108(14):5819–5824. doi:10.1073/pnas.1017033108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stancu I-C, Vasconcelos B, Terwel D, Dewachter I (2014) Models of β-amyloid induced Tau-pathology: the long and “folded” road to understand the mechanism. Mol Neurodegener 9:51. doi:10.1186/1750-1326-9-51

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tokutake T, Kasuga K, Yajima R, Sekine Y, Tezuka T, Nishizawa M, Ikeuchi T (2012) Hyperphosphorylation of Tau induced by naturally secreted amyloid-beta at nanomolar concentrations is modulated by insulin-dependent Akt-GSK3beta signaling pathway. J Biol Chem 287(42):35222–35233. doi:10.1074/jbc.M112.348300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Z, Simpkins JW (2010) Okadaic acid induces tau phosphorylation in SH-SY5Y cells in an estrogen-preventable manner. Brain Res 1345:176–181. doi:10.1016/j.brainres.2010.04.074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gong CX, Shaikh S, Wang JZ, Zaidi T, Grundke-Iqbal I, Iqbal K (1995) Phosphatase activity toward abnormally phosphorylated tau: decrease in Alzheimer disease brain. J Neurochem 65(2):732–738

    Article  CAS  PubMed  Google Scholar 

  25. Liu F, Li B, Tung EJ, Grundke-Iqbal I, Iqbal K, Gong CX (2007) Site-specific effects of tau phosphorylation on its microtubule assembly activity and self-aggregation. Eur J Neurosci 26(12):3429–3436. doi:10.1111/j.1460-9568.2007.05955.x

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hernandez F, Gomez de Barreda E, Fuster-Matanzo A, Lucas JJ, Avila J (2010) GSK3: a possible link between beta amyloid peptide and tau protein. Exp Neurol 223(2):322–325. doi:10.1016/j.expneurol.2009.09.011

    Article  CAS  PubMed  Google Scholar 

  27. Qian W, Shi J, Yin X, Iqbal K, Grundke-Iqbal I, Gong CX, Liu F (2010) PP2A regulates tau phosphorylation directly and also indirectly via activating GSK-3beta. J Alzheimer’s Dis JAD 19(4):1221–1229. doi:10.3233/jad-2010-1317

    CAS  PubMed  Google Scholar 

  28. Thornton C, Bright NJ, Sastre M, Muckett PJ, Carling D (2011) AMP-activated protein kinase (AMPK) is a tau kinase, activated in response to amyloid beta-peptide exposure. Biochem J 434(3):503–512. doi:10.1042/bj20101485

    Article  CAS  PubMed  Google Scholar 

  29. Greco SJ, Sarkar S, Johnston JM, Tezapsidis N (2009) Leptin regulates tau phosphorylation and amyloid through AMPK in neuronal cells. Biophys Res Commun 380(1):98–104. doi:10.1016/j.bbrc.2009.01.041

    Article  CAS  Google Scholar 

  30. Salminen A, Kaarniranta K, Haapasalo A, Soininen H, Hiltunen M (2011) AMP-activated protein kinase: a potential player in Alzheimer’s disease. J Neurochem 118(4):460–474. doi:10.1111/j.1471-4159.2011.07331.x

    Article  CAS  PubMed  Google Scholar 

  31. Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90(4):1383–1435. doi:10.1152/physrev.00030.2009

    Article  CAS  PubMed  Google Scholar 

  32. Parr C, Carzaniga R, Gentleman SM, Van Leuven F, Walter J, Sastre M (2012) Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-beta precursor protein. Mol Cell Biol 32(21):4410–4418. doi:10.1128/mcb.00930-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marchand B, Arsenault D, Raymond-Fleury A, Boisvert FM, Boucher MJ (2015) Glycogen synthase kinase-3 (GSK3) inhibition induces prosurvival autophagic signals in human pancreatic cancer cells. J Biol Chem 290(9):5592–5605. doi:10.1074/jbc.M114.616714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170(7):1101–1111. doi:10.1083/jcb.200504035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heiseke A, Aguib Y, Riemer C, Baier M, Schatzl HM (2009) Lithium induces clearance of protease resistant prion protein in prion-infected cells by induction of autophagy. J Neurochem 109(1):25–34. doi:10.1111/j.1471-4159.2009.05906.x

    Article  CAS  PubMed  Google Scholar 

  36. Kim J, Kundu M, Viollet B, Guan K-L (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141. doi:http://www.nature.com/ncb/journal/v13/n2/abs/ncb2152.html#supplementary-information

  37. Hung SY, Huang WP, Liou HC, Fu WM (2009) Autophagy protects neuron from Abeta-induced cytotoxicity. Autophagy 5(4):502–510

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Institutional Program of the Korea Institute of Science and Technology (2Z04690), the Bio-Synergy Research Project (NRF-2012M3A9C4048793) and the Bio and Medical Technology Development Program (NRF-2015M3A9A5030735) of the Ministry of Science, ICT, and Future Planning through the National Research Foundation, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Ok Yang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, MY., Kim, J. & Yang, H.O. The Neuroprotective Effects of Justicidin A on Amyloid Beta25–35-Induced Neuronal Cell Death Through Inhibition of Tau Hyperphosphorylation and Induction of Autophagy in SH-SY5Y Cells. Neurochem Res 41, 1458–1467 (2016). https://doi.org/10.1007/s11064-016-1857-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1857-5

Keywords

Navigation