Skip to main content
Log in

A Tribute to Mary C. McKenna: Glutamate as Energy Substrate and Neurotransmitter—Functional Interaction Between Neurons and Astrocytes

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glutamate metabolism in the brain is extremely complex not only involving a large variety of enzymes but also a tight partnership between neurons and astrocytes, the latter cells being in control of de novo synthesis of glutamate. This review provides an account of the processes involved, i.e. pyruvate carboxylation and recycling as well as the glutamate–glutamine cycle, focusing on the many seminal contributions from Dr. Mary McKenna. The ramification of the astrocytic end feet allowing contact and control of hundreds of thousands of synapses at the same time obviously puts these cells in a prominent position to regulate neural activity. Additionally, the astrocytes take active part in the neurotransmission processes by releasing a variety of gliotransmitters including glutamate. Hence, the term “the tripartite synapse”, in which there is an active and dynamic interplay between the pre- and post-synaptic neurons and the ensheathing astrocytes, has been coined. The studies of Mary McKenna and her colleagues over several decades have been of paramount importance for the elucidation of compartmentation in astrocytes and synaptic terminals and the intricate metabolic processes underlying the glutamatergic neurotransmission process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Erecinska M, Silver IA (1990) Metabolism and role of glutamate in mammalian brain. Prog Neurobiol 35:245–296

    Article  CAS  PubMed  Google Scholar 

  2. Waagepetersen HS, Sonnewald U, Schousboe A (2007) Glutamine, glutamate, and GABA: metabolic aspects. In: Oja S, Schousboe A, Kontro P (eds) Handbook of neurochemistry and molecular neurobiology, 3rd edition: amino acids and peptides in the nervous system. Springer, NY, pp 1–21

    Chapter  Google Scholar 

  3. Hertz L (1979) Functional interactions between neurons and astrocytes. I. Turnover and metabolism of putative amino acid neurotransmitters. Prog Neurobiol 13:277–323

    Article  CAS  PubMed  Google Scholar 

  4. Schousboe A (1981) Transport and metabolism of glutamate and GABA in neurons and glial cells. Int Rev Neurobiol 22:1–45

    Article  CAS  PubMed  Google Scholar 

  5. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  6. Schousboe A (2013) Glutamate neurotoxicity related to energy failure. In: Kostrzewa RM (ed) Handbook of neurotoxicity. Springer Science Media, NY, pp 1299–1310

    Google Scholar 

  7. Curtis DR, Phillis JW, Watkins JC (1959) Chemical excitation of spinal neurons. Nature 183:611–612

    Article  CAS  PubMed  Google Scholar 

  8. Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11

    Article  CAS  PubMed  Google Scholar 

  9. Verkhratsky A, Schousboe A, Parpura V (2014) Glutamate and ATP: the crossroads of signaling and metabolism in the brain. Adv Neurobiol 11:1–12

    Article  PubMed  Google Scholar 

  10. McKenna MC, Dienel GA, Sonnewald U, Waagepetersen HS, Schousboe A (2012) Energy metabolism in the brain. In: Siegel GJ, Albers RW, Brady ST, Price DI (eds) Basic neurochemistry: molecular, cellular and medical aspects, 8th edn. Elsevier-Academic Press, London, pp 200–231

    Chapter  Google Scholar 

  11. McKenna MC (2013) Glutamate pays its own way in astrocytes. Front Endocrinol 4:1–6. Article 191. doi:10.3389/fendo.2013.00191

  12. Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC (2014) Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol 11:13–30

    Article  PubMed  PubMed Central  Google Scholar 

  13. Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    Article  CAS  PubMed  Google Scholar 

  14. Schousboe A, Hertz L, Svenneby G, Kvamme E (1979) Phosphate activated glutaminase activity and glutamine uptake in primary cultures of astrocytes. J Neurochem 32:943–950

    Article  CAS  PubMed  Google Scholar 

  15. Kvamme E, Torgner IA, Roberg B (2001) Kinetics and localization of brain phosphate activated glutaminase. J Neurosci Res 66:951–958

    Article  CAS  PubMed  Google Scholar 

  16. Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH-C, Han X, Akano T, Wang S, Goldman SA, Nedergaard M (2007) The transcriptome and metabolic gene signature of protoplasmic astrocytes in adult murine cortex. J Neurosci 27:12255–12266

    Article  CAS  PubMed  Google Scholar 

  17. Lieth E, LaNoue KF, Berkich DA, Xu B, Ratz M, Taylor C, Hutson SM (2001) Nitrogen shuttling between neurons and glial cells during glutamate synthesis. J Neurochem 76:1712–1723

    Article  CAS  PubMed  Google Scholar 

  18. Schousboe A, Walls AB, Bak LK, Waagepetersen HS (2015) Astroglia and brain metabolism: focus on energy and neurotransmitter amino acid homeostasis. In: Verkhratsky A, Parpura V (eds) Colloquium series on neuroglia in biology and medicine from physiology to disease. Morgan & Claypool Life Sciences, San Rafael, CA, pp 1–63

    Google Scholar 

  19. Schousboe A, Svenneby G, Hertz L (1977) Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J Neurochem 29:999–1005

    Article  CAS  PubMed  Google Scholar 

  20. Larsson OM, Drejer J, Kvamme E, Svenneby G, Hertz L, Schousboe A (1985) Ontogenetic development of GABA and glutamate metabolizing enzymes in cultured cerebral cortex interneurons and in cerebral cortex in vivo. Int J Dev Neurosci 3:177–185

    Article  CAS  PubMed  Google Scholar 

  21. Kvamme E, Svenneby G, Torgner IA, Drejer J, Schousboe A (1985) Postnatal development of glutamate metabolizing enzymes in hippocampus from mice. Int J Dev Neurosci 3:359–364

    Article  CAS  PubMed  Google Scholar 

  22. McKenna MC, Stevenson JH, Huang X, Hopkins I (2000) Differential distribution of the enzymes glutamate dehydrogenase and aspartase aminotransferase in cortical mitochondria contributes to metabolic compartmentation in cortical synaptic terminals. Neurochem Int 37:229–241

    Article  CAS  PubMed  Google Scholar 

  23. McKenna MC (2011) Glutamate dehydrogenase in brain mitochondria: do lipid modifications and transient metabolon formation influence enzyme activity? Neurochem Int 59:525–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Waagepetersen HS, Bakken IJ, Larsson OM, Sonnewald U, Schousboe A (1998) Comparison of lactate and glucose metabolism in cultured neocortical neurons using 13C NMR spectroscopy. Dev Neurosci 20:310–321

    Article  CAS  PubMed  Google Scholar 

  25. McKenna MC, Tildon JT, Stevenson JH, Boatright R, Huang S (1993) Regulation of energy metabolism in synaptic terminals and cultured rat brain astrocytes: differences revealed using aminooxyacetate. Dev Neurosci 15:320–329

    Article  CAS  PubMed  Google Scholar 

  26. Sonnewald U, McKenna MC (2002) Metabolic compartmentation in cortical synaptosomes: influence of glucose and preferential incorporation of endogenous glutamate into GABA. Neurochem Res 27:43–50

    Article  CAS  PubMed  Google Scholar 

  27. Schousboe A, Westergaard N, Sonnewald U, Petersen SB, Huang R, Peng L, Hertz L (1993) Glutamate and glutamine metabolism and compartmentation in astrocytes. Dev Neurosci 15:359–366

    Article  CAS  PubMed  Google Scholar 

  28. McKenna MC, Tildon JT, Stevenson JH, Huang X (1996) New insights into the compartmentation of glutamate and glutamine in cultured rat brain astrocytes. Dev Neurosci 18:380–390

    Article  CAS  PubMed  Google Scholar 

  29. McKenna MC (2007) The glutamate–glutamine cycle is not stoichiometric: fates of glutamate in the brain. J Neurosci Res 85:3347–3358

    Article  CAS  PubMed  Google Scholar 

  30. Balazs R (1965) Control of glutamate oxidation in brain and liver mitochondrial systems. Biochem J 95:497–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Farinelli SE, Nicklas WJ (1992) Glutamate metabolism in rat cortical astrocyte cultures. J Neurochem 58:1905–1915

    Article  CAS  PubMed  Google Scholar 

  32. Yu AC, Schousboe A, Hertz L (1982) Metabolic fate of 14C-labelled glutamate in astrocytes in primary cultures. J Neurochem 39:540–545

    Google Scholar 

  33. Hertz L (2013) The glutamate–glutamine (GABA) cycle: importance of late postnatal development and potential reciprocal interactions between biosynthesis and degradation. Front Endocrinol 4: article 59. doi:10.3389/fendo.2013.0059

  34. McKenna MC, Sonnewald U, Huang X, Stevenson J, Zielke HR (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J Neurochem 66:386–393

    Article  CAS  PubMed  Google Scholar 

  35. Pajecka K, Nissen JD, Stridh MH, Skytt DM, Schousboe A, Waagepetersen HS (2015) Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenase-deficient astrocytes. J Neurosci Res. doi:10.1002/jnr.23568

    PubMed  Google Scholar 

  36. Nissen JD, Pajecka K, Stridh MH, Skytt DM, Waagepetersen HS (2015) Dysfunctional TCA-cycle metabolism in glutamate dehydrogenase deficient astrocytes. Glia. doi:10.1002/glia.22895

    PubMed  Google Scholar 

  37. Cerdan S, Kunnecke B, Seelig J (1990) Cerebral metabolism of [1,2-13C2]acetate as detected by in vivo and in vitro 13C NMR. J Biol Chem 265:12916–12926

    CAS  PubMed  Google Scholar 

  38. Sonnewald U, Westergaard N, Jones P, Taylor A, Bachelard HS, Schousboe A (1996) Metabolism of [U-13C5]glutamine in cultured astrocytes studied by NMR spectroscopy: first evidence of astrocytic pyruvate recycling. J Neurochem 67:2566–2572

    Article  CAS  PubMed  Google Scholar 

  39. Waagepetersen H, Qu H, Hertz L, Sonnewald U, Schousboe A (2002) Demonstration of pyruvate recycling in primary cultures of neocortical astrocytes but not in neurons. Neurochem Res 27:1431–1437

    Article  CAS  PubMed  Google Scholar 

  40. Olstad E, Olsen GM, Qu H, Sonnewald U (2007) Pyruvate recycling in cultured neurons from cerebellum. J Neurosci Res 85:3318–3325

    Article  CAS  PubMed  Google Scholar 

  41. Amaral AI, Teixeira AP, Sonnewald U, Alves PM (2011) Estimation of intracellular fluxes in cerebellar neurons after hypoglycemia: importance of the pyruvate recycling pathway and glutamine oxidation. J Neurosci Res 89:700–710

    Article  CAS  PubMed  Google Scholar 

  42. Scafidi S, O’Brian J, Hopkins I, Robertson C, Fiskum G, McKenna MC (2011) Delayed cerebral oxidative glucose metabolism afte traumatic brain injury in young rats. J Neurochem 109(Suppl. 1):189–197

    Google Scholar 

  43. Sonnewald U (2014) Glutamate synthesis has to be matched by its degradation—where do all the carbons go? J Neurochem 131:399–406

    Article  CAS  PubMed  Google Scholar 

  44. Sonnewald U, Westergaard N, Petersen SB, Unsgaard G, Schousboe A (1993) Metabolism of [U-13C]glutamate in astrocytes studied by 13C NMR spectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle. J Neurochem 61:1179–1182

    Article  CAS  PubMed  Google Scholar 

  45. Schousboe A (2012) Studies of brain metabolism: a historical perspective. Adv Neurobiol 4:909–920

    Article  Google Scholar 

  46. Patel MS (1974) The relative significance of CO2-fixing enzymes in the metabolism of the brain. J Neurochem 22:717724

    Google Scholar 

  47. Yu AC, Drejer J, Hertz L, Schousboe A (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 42:1484–1487

    Article  Google Scholar 

  48. Shank RP, Bennett GS, Freytag SO, Campbell GL (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329:364–367

    Article  CAS  PubMed  Google Scholar 

  49. Cesar M, Hamprecht B (1995) Immunocytochemical examination of neural rat and mouse primary cultures using monoclonal antibodies raised against pyruvate carboxylase. J Neurochem 64:2312–2318

    Article  CAS  PubMed  Google Scholar 

  50. Cotman CW, Foster A, Lanthorn T (1981) An overview of glutamate as a neurotransmitter. Adv Biochem Psychopharmacol 27:1–27

    CAS  PubMed  Google Scholar 

  51. Westergaard N, Sonnewald U, Schousboe A (1995) Metabolic trafficking between neurons and astrocytes: the glutamate–glutamine cycle revisited. Dev Neurosci 17:203–211

    Article  CAS  PubMed  Google Scholar 

  52. Sonnewald U, Westergaard N, Schousboe A (1997) Glutamate transport and metabolism in astrocytes. Glia 21:56–63

    Article  CAS  PubMed  Google Scholar 

  53. Chaudhry FA, Reimer AJ, Edwards RH (2002) The glutamine commute: take the N line and transfer to the A. J Cell Biol 157:349–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98:641–653

    Article  CAS  PubMed  Google Scholar 

  55. Leke R, Escobar TDC, Rama Rao KV, Reverbel da Silveira T, Norenberg MD, Schousboe A (2015) Expression of glutamine transporter isoforms in cerebral cortex of rats with chronic hepatic encephalopathy. Neurochem Int 88:32–37. doi:10.1016/j.neuint.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  56. Palaiologos G, Hertz L, Schousboe A (1988) Evidence that aspartate aminotransferase activity and ketodicarboxylate carrier function are essential for biosynthesis of transmitter glutamate. J Neurochem 51:317–320

    Article  CAS  PubMed  Google Scholar 

  57. Kihara M, Kubo T (1989) Aspartate aminotransferease for synthesis of transmitter glutamate in the medulla oblongata: effect of aminooxyacetic acid and 2-oxoglutarate. J Neurochem 52:1127–1134

    Article  CAS  PubMed  Google Scholar 

  58. Shank RP, Baldy WJ, Ash CH (1989) Glutamine and 2-oxoglutarate as metabolic precursors of the transmitter pools of glutamate and GABA: correlation of regional uptake by rat brain synaptosomes. Neurochem Res 14:371–376

    Article  CAS  PubMed  Google Scholar 

  59. Peng L, Schousboe A, Hertz L (1991) Utilization of alpha-ketoglutarate as a precursor for glutamate in cultured cerebellar granule cells. Neurochem Res 16:29–34

    Article  CAS  PubMed  Google Scholar 

  60. Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553

    Article  CAS  PubMed  Google Scholar 

  61. Oberheim NA, Takano T, Han X, He W, Lin JH, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia the unacknowledged partner. Trends Neurosci 22:208–215

    Article  CAS  PubMed  Google Scholar 

  63. Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF Jr, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A (2012) Glial cells in (patho)physiology. J Neurochem 121:4–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Schousboe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schousboe, A. A Tribute to Mary C. McKenna: Glutamate as Energy Substrate and Neurotransmitter—Functional Interaction Between Neurons and Astrocytes. Neurochem Res 42, 4–9 (2017). https://doi.org/10.1007/s11064-015-1813-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1813-9

Keywords

Navigation