Skip to main content
Log in

Some Operational Characteristics of Glycine Release in Rat Retina: The Role of Reverse Mode Operation of Glycine Transporter Type-1 (GlyT-1) in Ischemic Conditions

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Rat posterior eyecups containing the retina were prepared, loaded with [3H]glycine and superfused in order to determine its release originated from glycinergic amacrine cells and/or glial cells. Deprivation of oxygen and glucose from the Krebs-bicarbonate buffer used for superfusion evoked a marked increase of [3H]glycine release, an effect that was found to be external Ca2+-independent. Whereas oxygen and glucose deprivation increased [3H]glycine release, its uptake was reduced suggesting that energy deficiency shifts glycine transporter type-1 operation from normal to reverse mode. The increased release of [3H]glycine evoked by oxygen and glucose deprivation was suspended by addition of the non-competitive glycine transporter type-1 inhibitor NFPS and the competitive inhibitor ACPPB further suggesting the involvement of this transporter in the mediation of [3H]glycine release. Oxygen and glucose deprivation also evoked [3H]glutamate release from rat retina and the concomitantly occurring release of the NMDA receptor agonist glutamate and the coagonist glycine makes NMDA receptor pathological overstimulation possible in hypoxic conditions. [3H]Glutamate release was suspended by addition of the excitatory amino acid transporter inhibitor TBOA. Sarcosine, a substrate inhibitor of glycine transporter type-1, also increased [3H]glycine release probably by heteroexchange shifting transporter operation into reverse mode. This effect of sarcosine was also external Ca2+-independent and could be suspended by NFPS. Energy deficiency in retina induced by ouabain, an inhibitor of the Na+–K+-dependent ATPase, and by rotenone, a mitochondrial complex I inhibitor added with the glycolytic inhibitor 2-deoxy-d-glucose, led to increase of retinal [3H]glycine efflux. These effects of ouabain and rotenone/2-deoxy-d-glucose could also be blocked by NFPS pointed to the preferential reverse mode operation of glycine transporter type-1 as a consequence of impaired cellular energy homeostasis. Immunohistochemical studies revealed that glycine transporter type-1, of which reverse mode operation assures [3H]glycine release, is expressed in amacrine cells in the inner nuclear and plexiform layers of the retina and also in Müller macroglia cells. We conclude that disruption of the balanced normal/reverse mode operation of glycine transporter type-1 is likely a significant factor contributing to neurotoxic processes of the retina. The possibility to inhibit glycine transporter type-1 mediated glycine efflux by drugs more potently than glycine uptake might offer some therapeutic potential for the treatment of various neurodegenerative disorders of the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–537

    Article  CAS  PubMed  Google Scholar 

  2. Wässle H, Heinze L, Ivanova I, Majumdar S, Weiss J, Harvey RJ, Havenkamp S (2009) Glycinergic transmission in the mammalian retina. Front Mol Neurosci 2:6–20

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pow DV, Hendrickson AE (1999) Distribution of the glycine transporter glyt-1 in mammalian and nonmammalian retinae. Vis Neurosci 16:231–239

    Article  CAS  PubMed  Google Scholar 

  4. Haverskomp S, Wässle H (2000) Immunohistochemical analysis of the mouse retina. J Comp Neurol 424:1–23

    Article  Google Scholar 

  5. Gadea A, Lopez E, Lopez-Colome AM (1999) Characterization of glycine transport in cultured Muller glial cells from the retina. Glia 26:273–279

    Article  CAS  PubMed  Google Scholar 

  6. Lee S-C, Zhong Y-M, Yang X-L (2005) Expression of glycine receptor and transporter on bullfrog retinal Müller cells. Neurosci Lett 387:75–79

    Article  CAS  PubMed  Google Scholar 

  7. Osborne NN, Casson RJ, Wood JPM, Chidlow G, Graham M, Melena J (2004) Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retinal Eye Res 23:91–147

    Article  CAS  Google Scholar 

  8. Beart PM, O’Shea RD (2007) Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150:5–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harsing LG Jr, Albert M, Matyus P, Szenasi G (2012) Inhibition of hypoxia-induced [3H]glycine release from chicken retina by the glycine transporter type-1 (GlyT-1) inhibitors NFPS and Org-24461. Exp Eye Res 94:6–12

    Article  CAS  PubMed  Google Scholar 

  10. Barnett NL, Pow DV, Bull ND (2001) Differential perturbation of neuronal and glial glutamate transport systems in retinal ischemia. Neurochem Int 39:291–299

    Article  CAS  PubMed  Google Scholar 

  11. Phillis JW, Regan MH (2003) Characterization of modes of release of amino acids in the ischemic/reperfused rat cerebral cortex. Neurochem Int 43:461–467

    Article  CAS  PubMed  Google Scholar 

  12. Thomsen C (2006) Glycine transporter inhibitors as novel antipsychotics. Drug Discov Today Ther Strateg 3:539–545

    Article  Google Scholar 

  13. Grewer C, Gameiro A, Zhang Z, Tao Z, Braams S, Rauen T (2009) Glutamate forward and reverse transport: from molecular mechanism to transporter-mediated release after ischemia. IUBMB Life 60:609–619

    Article  Google Scholar 

  14. Fletcher EL, Hack I, Brandstätter JH, Wässle H (2000) Synaptic localization of NMDA receptor subunits in rat retina. J Comp Neurol 420:98–112

    Article  CAS  PubMed  Google Scholar 

  15. Hama Y, Katsuki H, Tochikawa Y, Suminaka C, Kume T, Akaike A (2006) Contribution of endogenous glycine site NMDA agonists to excitotoxic retinal damage in vivo. Neurosci Res 56:279–285

    Article  CAS  PubMed  Google Scholar 

  16. Chidlow G, Wood JPM, Casson RJ (2007) Pharmacological neuroprotection for glaucoma. Drugs 67:725–759

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt K-G, Bergert H, Funk RHW (2008) Neurodegenerative diseases of the retina and potential for protection and recovery. Curr Neuropharmacol 6:164–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Osborne NN, Melena J, Chidrow G, Wood JPM (2001) A hypothesis to explain ganglion cell death caused by vascular insults at the optic nerve head: possible implications for the treatment of glaucoma. Br J Ophthalmol 85:1252–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smith KE, Borden LA, Hartig PA, Branchek T, Weinshank RL (1992) Cloning and expression of a glycine transporter reveal colocalization with NMDA receptors. Neuron 8:927–936

    Article  CAS  PubMed  Google Scholar 

  20. Cubelos B, Gimenez C, Zafra F (2005) Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain. Cereb Cortex 15:448–459

    Article  PubMed  Google Scholar 

  21. Reed BT, Sullivan SJ, Tsai G, Coyle T, Esguerra M, Miller RF (2009) The glycine transporter GlyT1 controls N-methyl-d-aspartic acid receptor coagonist occupancy in the mouse retina. Eur J Neurosci 30:2308–2317

    Article  PubMed  PubMed Central  Google Scholar 

  22. Casson RJ (2006) Possible role of excitotoxicity in the pathology of glaucoma. Clin Exp Ophthalmol 34:54–63

    Article  Google Scholar 

  23. Guo L, Salt TE, Maass A, Luong V, Moss SE, Fitzke FW, Cordeiro MF (2006) Assessment of neuroprotective effects of glutamate modulation on glaucoma-related retinal ganglion cell apoptosis in vivo. Invest Ophthalmol Vis Sci 47:626–633

    Article  PubMed  PubMed Central  Google Scholar 

  24. Danysz W, Parson CG (1998) N-Methyl-d-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 50:597–66422

    CAS  PubMed  Google Scholar 

  25. Gigler G, Szenasi G, Simo A, Levay G, Harsing LG Jr, Sas K, Vecsei L, Toldi J (2007) Neuroprotective effect of l-kynurenine sulfate administered before focal cerebral ischemia in mice and global cerebral ischemia in gerbils. Eur J Pharmacol 564:116–122

    Article  CAS  PubMed  Google Scholar 

  26. Harsing LG Jr, Gigler G, Moricz K, Agoston M, Marko B, Szabo G, Szenasi G, Juranyi Z (2005) Antiischemic effects of Org-24461 and NFPS, two glycine transporter type-1 inhibitors. Soc Neurosci Abstr 669:16

    Google Scholar 

  27. Oda M, Kure S, Sugawara T, Yamaguchi S, Kojima K, Shinka T, Sato K, Narisawa A, Aoki Y, Matsubara Y, Omae T, Mizoi K, Kinouchi H (2013) Direct correlation between ischemic injury and extracellular glycine concentration in mice with genetically altered activities of the glycine cleavage multienzyme system. Stroke 38:2157–2164

    Article  Google Scholar 

  28. Yao W, Ji F, Chen Z, Zhang N, Ren S-Q, Zhang X-Y, Liu S-Y, Lu W (2012) Glycine exerts dual roles in ischemic injury through distinct mechanisms. Stroke 43:2212–2220

    Article  CAS  PubMed  Google Scholar 

  29. Kertesz S, Szabo G, Udvari S, Levay G, Matyus P, Harsing LG Jr (2013) Temporal alteration of spreading depression by the glycine transporter type-1 inhibitors NFPS and Org-24461 in the chicken retina. Brain Res 1492:1–6

    Article  CAS  PubMed  Google Scholar 

  30. Eyo UB, Miner SA, Ahlers KE, Wu L-J, Dailer ME (2013) P2X7 receptor activation regulates microglial cell death during oxygen–glucose deprivation. Neuropharmacology 73:311–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harsing LG Jr, Matyus P (2013) Mechanisms of gycine release, which build up synaptic and extrasynaptic glycine levels: the role of synaptic and non-synaptic glycine transporters. Brain Res Bull 93:110–119

    Article  CAS  PubMed  Google Scholar 

  32. Colleoni S, Jensen AA, Landucci E, Fumagalli E, Conti P, Pinto A, De Amici M, Pellegrini-Giampietro DE, De Michelli C, Mennini T, Gobbi M (2008) Neuroprotective effects of the novel glutamate transporter inhibitor (−)-3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrollo[3,4-d]-isoxazole-4-carboxylic acid, which preferentially inhibits reverse transport (glutamate release) compared with glutamate reuptake. J Pharmacol Exp Ther 326:646–656

    Article  CAS  PubMed  Google Scholar 

  33. Vizi ES, Harsing LG Jr, Knoll J (1977) Presynaptic inhibition leading to disinhibition of acetylcholine release from interneurons of the caudate nucleus: effect of dopamine, beta-endorphin and d-Ala2-Pro5-enkephalinamide. Neuroscience 2:953–961

    Article  CAS  Google Scholar 

  34. Marcaggi P, Hirji N, Attwell D (2005) Release of l-aspartate by reversal of glutamate transporters. Neuropharmacology 49:843–849

    Article  CAS  PubMed  Google Scholar 

  35. Lindsley CW, Zhao Z, Leister WH, O’Brien JA, Lemaire W, Williams DL Jr, Chen T-B, Chang RSL, Burno M, Jacobson MA, Sur C, Kinney GG, Pettibone DJ, Tiller PR, Smith S, Rsou NN, Duggan ME, Conn PJ, Hartman GD (2006) Design, synthesis, and in vivo efficacy of novel glycine transporter-1 (GlyT1) inhibitors derived from a series of [4-phenyl-1-(propyl-sulfonyl)-piperidin-4-yl)-methyl)benzamides. Chem Med Chem 1:807–811

    Article  CAS  PubMed  Google Scholar 

  36. Herdon HJ, Godfrey FM, Brown AM, Coulton S, Evans JR, Cairns WJ (2001) Pharmacological assessment of the role of glycine transporter GlyT-1 in mediating high affinity glycine uptake by rat cerebral cortex and cerebellum synaptosomes. Neuropharmacology 41:88–96

    Article  CAS  PubMed  Google Scholar 

  37. Harsing LG Jr, Gacsalyi I, Szabo G, Schmidt E, Sziray N, Sebban C, Tesolin-Decros B, Matyus P, Egyed A, Spedding M, Levay G (2013) The glycine transporter-1 inhibitors NFPS and Org 24461: a pharmacological study. Pharmacol Biochem Behav 74:811–825

    Article  Google Scholar 

  38. Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5:405–414

    CAS  PubMed  Google Scholar 

  39. Choo AM, Geddes-Klein DM, Hockemberry A, Scarcella D, Mesfin MN, Singh P, Patel TP, Meaney DF (2012) NR2A and NR2B subunits differentially mediate MAP kinase signaling and mitochondrial morphology following excitotoxic insult. Neurochem Int 60:506–516

    Article  CAS  PubMed  Google Scholar 

  40. Martel M-A, Ryan TJ, Bell KFS, Fowler JH, McMahon A, Al-Mubarak B, Komiyama NH, Horsburgh K, Kind PC, Grant SGN, Wyllie DJA (2012) The subtype of GluN2 C terminal domain determines the response to excitotoxic insults. Neuron 74:543–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  CAS  PubMed  Google Scholar 

  42. Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischemia is mainly by reversed uptake. Nature 403:316–321

    Article  CAS  PubMed  Google Scholar 

  43. Vizi ES (1998) Different temperature dependence of carrier-mediated (cytoplasmic) and stimulus-evoked (exocytotic) release of transmitter: a simple method to separate the two types of release. Neurochem Int 33:359–366

    Article  CAS  PubMed  Google Scholar 

  44. Harsing LG Jr (2013) An overview to glycine transporter type-1 (GlyT-1) inhibitors under evaluation for the treatment of schizophrenia. Drugs Future 38:555–568

    Google Scholar 

  45. Pinto MCX, de Assis Vieira, Lima I, Pessoa da Costa FL, Rosa DV, Mendes-Goulart VA, Resende RR, Romano-Silva MA, Pinheiro de Oliveira AC, Gomez MV, Gomez RS (2015) Glycine transporters type 1 inhibitor promotes brain preconditioning against NMDA-induced excitotoxicity. Neuropharmacology 89:274–281

    Article  PubMed  Google Scholar 

  46. Napper GA, Pianta MJ, Kalloniatis M (1999) Reduced glutamate uptake by retinal glial cells under ischemic/hypoxic conditions. Vis Neurosci 16:149–158

    CAS  PubMed  Google Scholar 

  47. Bull ND, Barnett NL (2004) Retinal glutamate transporter activity persists under stimulated ischemic conditions. J Neurosci Res 78:590–599

    Article  CAS  PubMed  Google Scholar 

  48. Kallo I, Jekkel C, Hrabovszky E, Juranyi Z, Vida B, Jarasi A, Wilheim T, Harsing LG Jr, Liposits Z (2008) Immunohistochemical and in situ hybridization studies on glycine transporter 1 after transient ischemia in the rat forebrain. Neurochem Int 52:799–808

    Article  CAS  PubMed  Google Scholar 

  49. Rao VLR, Dogan A, Bowen KK, Todd KG, Dempsey RJ (2001) Antisenese knockdown of the glial glutamate transporter GLT-1 exacerbates hippocampal neuronal damage following traumatic injury of the brain. Eur J Neurosci 13:119–128

    Article  CAS  PubMed  Google Scholar 

  50. Mitani A, Tanaka K (2003) Functional changes of glial glutamate transporter GLT-1 during ischemia: an in vivo study in the hippocampal CA1 of normal mice and mutant mice lacking GLT-1. J Neurosci 23:7176–7182

    CAS  PubMed  Google Scholar 

  51. Campiani G, De Angelis M, Armorali S, Fattorusso C, Catalanotti B, Ramunno A, Nacci V, Novellino E, Grewer C, Ionescu D, Rauen T, Griffiths R, Sinclair C, Fumagalli E, Mennini T (2001) A rational approach to the design of selective substrates and potent nontransportable inhibitors of the excitatory amino acid transporter EAAC1 (EAAT3). New glutamate and aspartate analogues as potential neuroprotective agents. J Med Chem 44:2507–2510

    Article  CAS  PubMed  Google Scholar 

  52. Harsing LG Jr, Timar J, Szabo G, Udvari S, Nagy KM, Marko B, Zsilla G, Czompa A, Rapolcsanyi P, Kocsis A, Matyus P (2015) Sarcosine-based glycine transporter type-1 (GlyT-1) inhibitors containing pyridazine moiety: a further search for drugs with potential to influence schizophrenia negative symptoms. Curr Pharm Des 21:2291–2303

    Article  CAS  PubMed  Google Scholar 

  53. Harsing LG Jr, Zsilla G, Matyus P, Nagy KM, Marko B, Zs Gyarmati, Szabo A, Timar J (2012) Interactions between glycine transporter type 1 (GlyT-1) and some inhibitor molecules. Acta Physiol Hung 99:1–17

    Article  CAS  PubMed  Google Scholar 

  54. Sperlagh B, Szabo G, Erdelyi F, Baranyi M, Vizi ES (2003) Homo- and heteroexchange of adenine nucleotides and nucleosides in rat hippocampal slices by the nucleoside transport system. Br J Pharmacol 139:623–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Miller GM (2011) The emerging role of trace amine associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity. J Neurochem 116:164–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Scholze P, Zwach J, Kattinger A, Pifl C, Singer EA, Sitte HH (2000) Transport-mediated release: a superfusion study on human embryonic kidney cells stably expressing the human serotonin transporter. J Pharmacol Exp Ther 293:870–878

    CAS  PubMed  Google Scholar 

  57. Vizi ES, Sperlagh B (1999) Separation of carrier mediated and vesicular release of GABA from rat brain slices. Neurochem Int 34:407–413

    Article  CAS  PubMed  Google Scholar 

  58. Wolburg H (1975) Time- and dose-dependent influence of ouabain on the ultrastructure of optic neurones. Cell Tissue Res 164:503–517

    Article  CAS  PubMed  Google Scholar 

  59. Stuermer CA, Niepenberg A, Wolburg H (1985) Aberrant axonal paths in regenerated goldfish retina and tectum opticum following intraocular injection of ouabain. Neurosci Lett 58:333–338

    Article  CAS  PubMed  Google Scholar 

  60. Milusheva E, Sperlagh B, Shikova L, Baranyi M, Tretter L, Adam-Vizi V, Vizi ES (2003) Non-synaptic release of [3H]noradrenaline in response to oxidative stress combined with mitochondrial dysfunction in rat hippocampal slices. Neuroscience 120:771–778

    Article  CAS  PubMed  Google Scholar 

  61. Bissonnette P, Gagne H, Blais A, Berteloot A (1996) 2-Deoxyglucose transport and metabolism in Caco-2 cells. Am J Physiol 270:G153–G162

    CAS  PubMed  Google Scholar 

  62. Rojas JC, Saavedra JA, Gonzales-Lima F (2008) Neuroprotective effects of memantine in a mouse model of retinal degeneration induced by rotenone. Brain Res 1215:208–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kalbaugh TL, Zhang J, Diamond JS (2009) Coagonist release modulates NMDA receptor subtype contributions at synaptic inputs to retinal ganglion cells. J Neurosci 29:1469–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, Lai TW, Wu DC, Lu J, Tymianski M, Craig AM, Wang YT (2007) NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death in vitro and in vivo. J Neurosci 27:2846–2857

    Article  CAS  PubMed  Google Scholar 

  65. Papouin T, Ladepeche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet J-P, Oliet SHR (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150:633–646

    Article  CAS  PubMed  Google Scholar 

  66. Hardingham GE, Bading H (2003) The Yin and Yang of NMDA receptor signalling. Trends Neurosci 26:81–89

    Article  CAS  PubMed  Google Scholar 

  67. Parsons MP, Raymond LA (2014) Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neurons 82:279–293

    Article  CAS  Google Scholar 

  68. Pena-Rangel T, Riesgo-Escovar JR, Sancez-Chavez G, Salcedo R (2008) Glycine transporters (glycine transporter 1 and glycine transporter 2) are expressed in retina. NeuroReport 19:1295–1299

    Article  CAS  PubMed  Google Scholar 

  69. Okamoto M, S-i Akanuma, Tachikawa M, K-i Hosoya (2009) Characteristics of glycine transport across the inner blood–retinal barrier. Neurochem Int 55:789–795

    Article  CAS  PubMed  Google Scholar 

  70. Sullivan SJ, Miller RF (2010) AMPA receptor mediated d-serine release from retinal glial cells. J Neurochem 115:1681–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gouix E, Leveille F, Nicole O, Melon C, Had-Aissouni L, Buisson A (2009) Reverse glial glutamate uptake triggers neuronal cell death through extrasynaptic NMDA receptor activation. Mol Cell Neurosci 40:463–473

    Article  CAS  PubMed  Google Scholar 

  72. Wakabayashi Y, Yagihashi T, Kezuka J, Muramatsu D, Ususi M, Iwasaki T (2006) Glutamate levels in aqueous humour of patients with retinal artery occlusion. Retina 26:432–436

    Article  PubMed  Google Scholar 

  73. Harsing LG Jr, Hannuska A, Matyus P (2011) Reversal of hypoxia-induced [3H]glycine release from isolated retina by glycine transporter type-1 (GlyT-1 inhibitors. Soc Neurosci Abstr 62:10

    Google Scholar 

  74. Harsing LG Jr, Hanuska A, Varga A, Matyus P, Szenasi G, Kertesz S, Albert M, Levay G (2012) Glycinergic neurotransmission in normal and hypoxic conditions: the role of glycine transporters. Soc Neurosci Abstr 536:26

    Google Scholar 

Download references

Acknowledgments

Parts of these findings were presented at Annual Meetings of the Society for Neuroscience [73, 74]. This research was supported in part by Gedeon Richter Research Grant (No. 4700127342/2012). The authors wish to thank Ms. Eva Mesko for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Matyus or Laszlo G. Harsing Jr..

Ethics declarations

Conflict of interest

The authors claim no conflicts of interest.

Additional information

Special Issue: 40th year of neurochemical research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanuska, A., Szénási, G., Albert, M. et al. Some Operational Characteristics of Glycine Release in Rat Retina: The Role of Reverse Mode Operation of Glycine Transporter Type-1 (GlyT-1) in Ischemic Conditions. Neurochem Res 41, 73–85 (2016). https://doi.org/10.1007/s11064-015-1713-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1713-z

Keywords

Navigation