Skip to main content

Advertisement

Log in

Determination of Glucose Utilization Rates in Cultured Astrocytes and Neurons with [14C]deoxyglucose: Progress, Pitfalls, and Discovery of Intracellular Glucose Compartmentation

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

2-Deoxy-d-[14C]glucose ([14C]DG) is commonly used to determine local glucose utilization rates (CMRglc) in living brain and to estimate CMRglc in cultured brain cells as rates of [14C]DG phosphorylation. Phosphorylation rates of [14C]DG and its metabolizable fluorescent analog, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), however, do not take into account differences in the kinetics of transport and metabolism of [14C]DG or 2-NBDG and glucose in neuronal and astrocytic cells in cultures or in single cells in brain tissue, and conclusions drawn from these data may, therefore, not be correct. As a first step toward the goal of quantitative determination of CMRglc in astrocytes and neurons in cultures, the steady-state intracellular-to-extracellular concentration ratios (distribution spaces) for glucose and [14C]DG were determined in cultured striatal neurons and astrocytes as functions of extracellular glucose concentration. Unexpectedly, the glucose distribution spaces rose during extreme hypoglycemia, exceeding 1.0 in astrocytes, whereas the [14C]DG distribution space fell at the lowest glucose levels. Calculated CMRglc was greatly overestimated in hypoglycemic and normoglycemic cells because the intracellular glucose concentrations were too high. Determination of the distribution space for [14C]glucose revealed compartmentation of intracellular glucose in astrocytes, and probably, also in neurons. A smaller metabolic pool is readily accessible to hexokinase and communicates with extracellular glucose, whereas the larger pool is sequestered from hexokinase activity. A new experimental approach using double-labeled assays with DG and glucose is suggested to avoid the limitations imposed by glucose compartmentation on metabolic assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CMRglc :

Cerebral rate of glucose utilization

DG:

2-Deoxy-d-glucose

DMEM:

Dulbecco’s modified Eagle medium

Glc:

Glucose

IAP:

4-Iodo-[N-methyl]antipyrine or iodoantipyrine

Methylglucose:

3-O-methyl-d-glucose

2- or 6-NBDG:

2- or 6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose

PBS:

Phosphate-buffered saline

References

  1. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  CAS  PubMed  Google Scholar 

  2. Holden JE, Mori K, Dienel GA, Cruz NF, Nelson T, Sokoloff L (1991) Modeling the dependence of hexose distribution volumes in brain on plasma glucose concentration: implications for estimation of the local 2-deoxyglucose lumped constant. J Cereb Blood Flow Metab 11:171–182

    Article  CAS  PubMed  Google Scholar 

  3. Dienel GA, Cruz NF, Mori K, Holden JE, Sokoloff L (1991) Direct measurement of the lambda of the lumped constant of the deoxyglucose method in rat brain: determination of lambda and lumped constant from tissue glucose concentration or equilibrium brain/plasma distribution ratio for methylglucose. J Cereb Blood Flow Metab 11:25–34

    Article  CAS  PubMed  Google Scholar 

  4. Dienel GA, Cruz NF, Adachi K, Sokoloff L, Holden JE (1997) Determination of local brain glucose level with [14C]methylglucose: effects of glucose supply and demand. Am J Physiol 273:E839–E849

    CAS  PubMed  Google Scholar 

  5. Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27:1766–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ (2008) The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab 295:E242–E253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cummins CJ, Glover RA, Sellinger OZ (1979) Neuronal cues regulate uptake in cultured astrocytes. Brain Res 170:190–193

    Article  CAS  PubMed  Google Scholar 

  8. Hara M, Matsuda Y, Hirai K, Okumura N, Nakagawa H (1989) Characteristics of glucose transport in neuronal cells and astrocytes from rat brain in primary culture. J Neurochem 52:902–908

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi S, Driscoll BF, Law MJ, Sokoloff L (1995) Role of sodium and potassium ions in regulation of glucose metabolism in cultured astroglia. Proc Natl Acad Sci USA 92:4616–4620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaufman EE, Driscoll BF (1992) Carbon dioxide fixation in neuronal and astroglial cells in culture. J Neurochem 58:258–262

    Article  CAS  PubMed  Google Scholar 

  11. Sakurada O, Kennedy C, Jehle J, Brown JD, Carbin GL, Sokoloff L (1978) Measurement of local cerebral blood flow with iodo [14C] antipyrine. Am J Physiol 234:H59–H66

    CAS  PubMed  Google Scholar 

  12. Passonneau JV, Lowry OH (1993) Enzymatic analysis. A practical guide. Humana Press, Totowa

    Book  Google Scholar 

  13. Dienel GA, Cruz NF, Mori K, Sokoloff L (1990) Acid lability of metabolites of 2-deoxyglucose in rat brain: implications for estimates of kinetic parameters of deoxyglucose phosphorylation and transport between blood and brain. J Neurochem 54:1440–1448

    Article  CAS  PubMed  Google Scholar 

  14. Dienel GA, Cruz NF (1993) Synthesis of deoxyglucose-1-phosphate, deoxyglucose-1,6-bisphosphate, and other metabolites of 2-deoxy-d-[14C]glucose in rat brain in vivo: influence of time and tissue glucose level. J Neurochem 60:2217–2231

    Article  CAS  PubMed  Google Scholar 

  15. Dienel GA, Cruz NF, Sokoloff L (1993) Metabolites of 2-deoxy-[14C]glucose in plasma and brain: influence on rate of glucose utilization determined with deoxyglucose method in rat brain. J Cereb Blood Flow Metab 13:315–327

    Article  CAS  PubMed  Google Scholar 

  16. Grossbard L, Schimke RT (1966) Multiple hexokinases of rat tissues. Purification and comparison of soluble forms. J Biol Chem 241:3546–3560

    CAS  PubMed  Google Scholar 

  17. DiNuzzo M, Mangia S, Maraviglia B, Giove F (2010) Glycogenolysis in astrocytes supports blood-borne glucose channeling not glycogen-derived lactate shuttling to neurons: evidence from mathematical modeling. J Cereb Blood Flow Metab 30:1895–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Walls AB, Heimburger CM, Bouman SD, Schousboe A, Waagepetersen HS (2009) Robust glycogen shunt activity in astrocytes: effects of glutamatergic and adrenergic agents. Neuroscience 158:284–292

    Article  CAS  PubMed  Google Scholar 

  19. Passonneau JV, Crites SK (1976) Regulation of glycogen metabolism in astrocytoma and neuroblastoma cells in culture. J Biol Chem 251:2015–2022

    CAS  PubMed  Google Scholar 

  20. Passonneau JV, Lowry OH, Schulz DW, Brown JG (1969) Glucose 1,6-diphosphate formation by phosphoglucomutase in mammalian tissues. J Biol Chem 244:902–909

    CAS  PubMed  Google Scholar 

  21. Lowry OH, Passonneau JV (1964) The relationships between substrates and enzymes of glycolysis in brain. J Biol Chem 239:31–42

    CAS  PubMed  Google Scholar 

  22. Colowick SP, Sutherland EW (1942) Polysaccharide synthesis from glucose by means of purified enzymes. J Biol Chem 144:423–437

    CAS  Google Scholar 

  23. Mori K, Cruz N, Dienel G, Nelson T, Sokoloff L (1989) Direct chemical measurement of the lambda of the lumped constant of the [14C]deoxyglucose method in rat brain: effects of arterial plasma glucose level on the distribution spaces of [14C]deoxyglucose and glucose and on lambda. J Cereb Blood Flow Metab 9:304–314

    Article  CAS  PubMed  Google Scholar 

  24. Tomioka S (2012) Water transport by glucose transporter type 3 expressed in Xenopus oocytes. NeuroReport 23:21–25

    Article  CAS  PubMed  Google Scholar 

  25. MacAulay N, Zeuthen T (2010) Water transport between CNS compartments: contributions of aquaporins and cotransporters. Neuroscience 168:941–956

    Article  CAS  PubMed  Google Scholar 

  26. Nakanishi H, Cruz NF, Adachi K, Sokoloff L, Dienel GA (1996) Influence of glucose supply and demand on determination of brain glucose content with labeled methylglucose. J Cereb Blood Flow Metab 16:439–449

    Article  CAS  PubMed  Google Scholar 

  27. Walz W, Mukerji S (1988) Lactate release from cultured astrocytes and neurons: a comparison. Glia 1:366–370

    Article  CAS  PubMed  Google Scholar 

  28. Walz W, Mukerji S (1990) Simulation of aspects of ischemia in cell culture: changes in lactate compartmentation. Glia 3:522–528

    Article  CAS  PubMed  Google Scholar 

  29. Walz W, Hertz L (1983) Intracellular ion changes of astrocytes in response to extracellular potassium. J Neurosci Res 10:411–423

    Article  CAS  PubMed  Google Scholar 

  30. Chen Y, McNeill JR, Hajek I, Hertz L (1992) Effect of vasopressin on brain swelling at the cellular level: do astrocytes exhibit a furosemide–vasopressin-sensitive mechanism for volume regulation? Can J Physiol Pharmacol 70(Suppl):S367–S373

    Article  CAS  PubMed  Google Scholar 

  31. Latzkovits L, Cserr HF, Park JT, Patlak CS, Pettigrew KD, Rimanoczy A (1993) Effects of arginine vasopressin and atriopeptin on glial cell volume measured as 3-MG space

  32. Speizer L, Haugland R, Kutchai H (1985) Asymmetric transport of a fluorescent glucose analogue by human erythrocytes. Biochim Biophys Acta 815:75–84

    Article  CAS  PubMed  Google Scholar 

  33. Cloherty EK, Sultzman LA, Zottola RJ, Carruthers A (1995) Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes. Biochemistry 34:15395–15406

    Article  CAS  PubMed  Google Scholar 

  34. Chuquet J, Quilichini P, Nimchinsky EA, Buzsaki G (2010) Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex. J Neurosci 30:15298–15303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dinuzzo M, Giove F, Maraviglia B, Mangia S (2013) Glucose metabolism down-regulates the uptake of 6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (6-NBDG) mediated by glucose transporter 1 isoform (GLUT1): theory and simulations using the symmetric four-state carrier model. J Neurochem 125:236–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Siesjö BK (1978) Brain energy metabolism. John Wiley & Sons, Chichester

    Google Scholar 

  37. Ghajar JB, Plum F, Duffy TE (1982) Cerebral oxidative metabolism and blood flow during acute hypoglycemia and recovery in unanesthetized rats. J Neurochem 38:397–409

    Article  CAS  PubMed  Google Scholar 

  38. Balmer D, Emery M, Andreux P, Auwerx J, Ginet V, Puyal J, Schorderet DF, Roduit R (2013) Autophagy defect is associated with low glucose-induced apoptosis in 661 W photoreceptor cells. PLoS ONE 8:e74162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mohseni S (2011) Autophagy in insulin-induced hypoglycaemic neuropathy. Pathology 43:254–260

    Article  PubMed  Google Scholar 

  40. Yue Z, Friedman L, Komatsu M, Tanaka K (2009) The cellular pathways of neuronal autophagy and their implication in neurodegenerative diseases. Biochim Biophys Acta 1793:1496–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Deegan S, Saveljeva S, Gorman AM, Samali A (2013) Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress. Cell Mol Life Sci 70:2425–2441

    Article  CAS  PubMed  Google Scholar 

  42. Mir SUR, George NM, Zahoor L, Harms R, Guinn Z, Sarvetnick NE (2015) Inhibition of autophagic turnover in β-cells by fatty acids and glucose leads to apoptotic cell death. J Biol Chem 290:6071–6085

    Article  CAS  PubMed  Google Scholar 

  43. Young JE, Martinez RA, La Spada AR (2009) Nutrient deprivation induces neuronal autophagy and implicates reduced insulin signaling in neuroprotective autophagy activation. J Biol Chem 284:2363–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xi H, Kurtoglu M, Liu H, Wangpaichitr M, You M, Liu X, Savaraj N, Lampidis TJ (2011) 2-Deoxy-d-glucose activates autophagy via endoplasmic reticulum stress rather than ATP depletion. Cancer Chemother Pharmacol 67:899–910

    Article  CAS  PubMed  Google Scholar 

  45. Kamiya Y, Satoh T, Kato K (2012) Molecular and structural basis for N-glycan-dependent determination of glycoprotein fates in cells. Biochim Biophys Acta 1820:1327–1337

    Article  CAS  PubMed  Google Scholar 

  46. Herscovics A (1999) Importance of glycosidases in mammalian glycoprotein biosynthesis. Biochim Biophys Acta 1473:96–107

    Article  CAS  PubMed  Google Scholar 

  47. Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7:1013–1030

    Article  CAS  PubMed  Google Scholar 

  48. Jonas AJ, Conrad P, Jobe H (1990) Neutral-sugar transport by rat liver lysosomes. Biochem J 272:323–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mancini GM, Beerens CE, Verheijen FW (1990) Glucose transport in lysosomal membrane vesicles. Kinetic demonstration of a carrier for neutral hexoses. J Biol Chem 265:12380–12387

    CAS  PubMed  Google Scholar 

  50. Schmidt S, Joost HG, Schurmann A (2009) GLUT8, the enigmatic intracellular hexose transporter. Am J Physiol Endocrinol Metab 296:E614–E618

    Article  CAS  PubMed  Google Scholar 

  51. Reagan LP, Rosell DR, Alves SE, Hoskin EK, McCall AL, Charron MJ, McEwen BS (2002) GLUT8 glucose transporter is localized to excitatory and inhibitory neurons in the rat hippocampus. Brain Res 932:129–134

    Article  CAS  PubMed  Google Scholar 

  52. Piroli GG, Grillo CA, Hoskin EK, Znamensky V, Katz EB, Milner TA, McEwen BS, Charron MJ, Reagan LP (2002) Peripheral glucose administration stimulates the translocation of GLUT8 glucose transporter to the endoplasmic reticulum in the rat hippocampus. J Comp Neurol 452:103–114

    Article  CAS  PubMed  Google Scholar 

  53. Gandhi GK, Ball KK, Cruz NF, Dienel GA (2010) Hyperglycaemia and diabetes impair gap junctional communication among astrocytes. ASN Neuro 2:e00030

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lind KR, Ball KK, Cruz NF, Dienel GA (2013) The unfolded protein response to endoplasmic reticulum stress in cultured astrocytes and rat brain during experimental diabetes. Neurochem Int 62:784–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Piroli GG, Grillo CA, Charron MJ, McEwen BS, Reagan LP (2004) Biphasic effects of stress upon GLUT8 glucose transporter expression and trafficking in the diabetic rat hippocampus. Brain Res 1006:28–35

    Article  CAS  PubMed  Google Scholar 

  56. Hertz L, Peng L, Lai JC (1998) Functional studies in cultured astrocytes. Methods 16:293–310

    Article  CAS  PubMed  Google Scholar 

  57. Song D, Xu J, Hertz L, Peng L (2015) Regulatory volume increase in astrocytes exposed to hypertonic medium requires beta1 -adrenergic Na(+)/K(+) -ATPase stimulation and glycogenolysis. J Neurosci Res 93:130–139

    Article  CAS  PubMed  Google Scholar 

  58. Lange S, Bak L, Waagepetersen H, Schousboe A, Norenberg M (2012) Primary Cultures of Astrocytes: their Value in Understanding Astrocytes in Health and Disease. Neurochem Res 37:2569–2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald A. Dienel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Special Issue: In honor of Dr. Mary McKenna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dienel, G.A., Cruz, N.F., Sokoloff, L. et al. Determination of Glucose Utilization Rates in Cultured Astrocytes and Neurons with [14C]deoxyglucose: Progress, Pitfalls, and Discovery of Intracellular Glucose Compartmentation. Neurochem Res 42, 50–63 (2017). https://doi.org/10.1007/s11064-015-1650-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1650-x

Keywords

Navigation