Skip to main content
Log in

Intermittent Hypoxia-Induced Parvalbumin-Immunoreactive Interneurons Loss and Neurobehavioral Impairment is Mediated by NADPH-Oxidase-2

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Obstructive sleep apnea usually contribute to psychiatric diseases and cognitive impairments in adults. Loss of parvalbumin (PV)-immunoreactive interneurons (PV-IN) in the brain cortex is an important feature of psychiatric diseases, such as schizophrenia. Here we investigate the causal contribution of oxidative stress in the brain cortex to neuropathological alterations in a mouse model of sleep apnea. Wild-type (WT) and the NADPH-oxidase-2 (gp91-phox/NOX2) knock-out adult male C57BL/6J mice were exposed to intermittent hypoxia (IH) or standard room air in the same chamber. In vivo we determined the impact (1) of IH exposures on NOX2 expression, (2) of genetic gp91-phox/NOX2 knock-out and (3) of pharmacological NOX2 inhibition on IH-induced neuropathological alterations in adult mice. Endpoints were oxidative stress, PV-IN and neurobehavioral alterations. The results showed IH exposures increased NOX2 expression in the prefrontal cortex of WT mice, which was accompanied with elevations of indirect markers of oxidative stress (HNE, HIF-1α, 8-OHDG). WT mice showed loss of PV-IN in the prefrontal cortex and increased locomotion activity and anxiety levels after exposed to IH, while no change emerged in NOX2 knock-out mice. Treatment of WT mice with the antioxidant/NOX inhibitor apocynin prevented the neuropathological and neurobehavioral alterations induced by IH exposures. Our data suggest that NOX2-derived oxidative stress is involved in the loss of PV-IN in the prefrontal cortex and development of neurobehavioral alterations for adult mice exposed to IH. These results provide a molecular mechanism for the coupling between sleep apnea and brain oxidative stress as well as potential new therapeutic avenues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Beebe DW, Gozal D (2002) Obstructive sleep apnea and the prefrontal cortex: towards a comprehensive model linking nocturnal upper airway obstruction to daytime cognitive and behavioral deficits. J Sleep Res 11:1–16

    Article  PubMed  Google Scholar 

  2. Gozal D, Crabtree VM, Sans Capdevila O, Witcher LA, Kheirandish-Gozal L (2007) C-reactive protein, obstructive sleep apnea, and cognitive dysfunction in school-aged children. Am J Respir Crit Care Med 176:188–193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Goldbart AD, Row BW, Kheirandish-Gozal L, Cheng Y, Brittian KR, Gozal D (2006) High fat/refined carbohydrate diet enhances the susceptibility to spatial learning deficits in rats exposed to intermittent hypoxia. Brain Res 1090:190–196

    Article  CAS  PubMed  Google Scholar 

  4. Gozal D, Nair D, Goldbart AD (2010) Physical activity attenuates intermittent hypoxia-induced spatial learning deficits and oxidative stress. Am J Respir Crit Care Med 182:104–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Topchiy I, Amodeo DA, Ragozzino ME, Waxman J, Radulovacki M, Carley DW (2014) Acute exacerbation of sleep apnea by hyperoxia impairs cognitive flexibility in brown-norway rats. Sleep 37:1851–1861

    PubMed Central  PubMed  Google Scholar 

  6. Min JJ, Huo XL, Xiang LY, Qin YQ, Chai KQ, Wu B, Jin L, Wang XT (2014) Protective effect of Dl-3n-butylphthalide on learning and memory impairment induced by chronic intermittent hypoxia–hypercapnia exposure. Sci Rep 4:5555

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Sumimoto H, Ueno N, Yamasaki T, Taura M, Takeya R (2004) Molecular mechanism underlying activation of superoxide-producing NADPH oxidases: roles for their regulatory proteins. Jpn J Infect Dis 57:S24–S25

    PubMed  Google Scholar 

  8. Babior BM, Lambeth JD, Nauseef W (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys 397:342–344

    Article  CAS  PubMed  Google Scholar 

  9. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  10. Infanger DW, Sharma RV, Davisson RL (2006) NADPH oxidases of the brain: distribution, regulation, and function. Antioxid Redox Signal 8:1583–1596

    Article  CAS  PubMed  Google Scholar 

  11. Sorce S, Krause KH (2009) NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal 11:2481–2504

    Article  CAS  PubMed  Google Scholar 

  12. Zhang XY, Yao JK (2013) Oxidative stress and therapeutic implications in psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 46:197–199

    Article  PubMed  Google Scholar 

  13. Behrens MM, Ali SS, Dao DN, Lucero J, Shekhtman G, Quick KL, Dugan LL (2007) Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science 318:1645–1647

    Article  CAS  PubMed  Google Scholar 

  14. Behrens MM, Ali SS, Dugan LL (2008) Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of schizophrenia. J Neurosci 28:13957–13966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Behrens MM, Sejnowski TJ (2009) Does schizophrenia arise from oxidative dysregulation of parvalbumin-interneurons in the developing cortex? Neuropharmacology 57:193–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Wischhof L, Irrsack E, Osorio C, Koch M (2015) Prenatal LPS-exposure—a neurodevelopmental rat model of schizophrenia—differentially affects cognitive functions, myelination and parvalbumin expression in male and female offspring. Prog Neuropsychopharmacol Biol Psychiatry 57:17–30

    Article  CAS  PubMed  Google Scholar 

  17. Bitanihirwe BK, Woo TU (2014) Transcriptional dysregulation of gamma-aminobutyric acid transporter in parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia. Psychiatry Res 220:1155–1159

    Article  CAS  PubMed  Google Scholar 

  18. Yuan G, Khan SA, Luo W, Nanduri J, Semenza GL, Prabhakar NR (2011) Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia. J Cell Physiol 226:2925–2933

    Article  CAS  PubMed  Google Scholar 

  19. Zhan G, Serrano F, Fenik P, Hsu R, Kong L, Pratico D, Klann E, Veasey SC (2005) NADPH oxidase mediates hypersomnolence and brain oxidative injury in a murine model of sleep apnea. Am J Respir Crit Care Med 172:921–929

    Article  PubMed Central  PubMed  Google Scholar 

  20. Nair D, Dayyat EA, Zhang SX, Wang Y, Gozal D (2011) Intermittent hypoxia-induced cognitive deficits are mediated by NADPH oxidase activity in a murine model of sleep apnea. PLoS ONE 6:e19847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2:322–328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wang Q, Tompkins KD, Simonyi A, Korthuis RJ, Sun AY, Sun GY (2006) Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res 1090:182–189

    Article  CAS  PubMed  Google Scholar 

  23. Young J, McKinney SB, Ross BM, Wahle KW, Boyle SP (2007) Biomarkers of oxidative stress in schizophrenic and control subjects. Prostag leukotr ess 76:73–85

    Article  CAS  Google Scholar 

  24. Maneen MJ, Cipolla MJ (2007) Peroxynitrite diminishes myogenic tone in cerebral arteries: role of nitrotyrosine and F-actin. Am J Physiol Heart Circ Physiol 292:H1042–H1050

    Article  CAS  PubMed  Google Scholar 

  25. Nanetti L, Taffi R, Vignini A, Moroni C, Raffaelli F, Bacchetti T, Silvestrini M, Provinciali L, Mazzanti L (2007) Reactive oxygen species plasmatic levels in ischemic stroke. Mol Cell Biochem 303:19–25

    Article  CAS  PubMed  Google Scholar 

  26. Serrano F, Kolluri NS, Wientjes FB, Card JP, Klann E (2003) NADPH oxidase immunoreactivity in the mouse brain. Brain Res 988:193–198

    Article  CAS  PubMed  Google Scholar 

  27. Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F, Michel JP, Szanto I (2005) Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience 132:233–238

    Article  CAS  PubMed  Google Scholar 

  28. Mole DR, Blancher C, Copley RR, Pollard PJ, Gleadle JM, Ragoussis J, Ratcliffe PJ (2009) Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem 284:16767–16775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda) 24:97–106

    Article  CAS  Google Scholar 

  30. Peng YJ, Yuan G, Ramakrishnan D, Sharma SD, Bosch-Marce M, Kumar GK, Semenza GL, Prabhakar NR (2006) Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. J Physiol 577:705–716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Cotter MA, Cameron NE (2003) Effect of the NAD(P)H oxidase inhibitor, apocynin, on peripheral nerve perfusion and function in diabetic rats. Life Sci 73:1813–1824

    Article  CAS  PubMed  Google Scholar 

  32. Jaquet V, Scapozza L, Clark RA, Krause KH, Lambeth JD (2009) Small-molecule NOX inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxid Redox Signal 11:2535–2552

    Article  CAS  PubMed  Google Scholar 

  33. Aldieri E, Riganti C, Polimeni M, Gazzano E, Lussiana C, Campia I, Ghigo D (2008) Classical inhibitors of NOX NAD(P)H oxidases are not specific. Curr Drug Metab 9:686–696

    Article  CAS  PubMed  Google Scholar 

  34. van Winkel R, Stefanis NC, Myin-Germeys I (2008) Psychosocial stress and psychosis. A review of the neurobiological mechanisms and the evidence for gene-stress interaction. Schizophr Bull 34:1095–1105

    Article  PubMed Central  PubMed  Google Scholar 

  35. Gonzalez-Liencres C, Tas C, Brown EC, Erdin S, Onur E, Cubukcoglu Z, Aydemir O, Esen-Danaci A, Brune M (2014) Oxidative stress in schizophrenia: a case inverted question markcontrol study on the effects on social cognition and neurocognition. BMC Psychiatry 14:268

    Article  PubMed Central  PubMed  Google Scholar 

  36. Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2:539–550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8:45–56

    Article  CAS  PubMed  Google Scholar 

  38. Dell’Anna E, Geloso MC, Magarelli M, Molinari M (1996) Development of GABA and calcium binding proteins immunoreactivity in the rat hippocampus following neonatal anoxia. Neurosci Lett 211:93–96

    Article  PubMed  Google Scholar 

  39. Wang Y, Zhan L, Zeng W, Li K, Sun W, Xu ZC, Xu E (2011) Downregulation of hippocampal GABA after hypoxia-induced seizures in neonatal rats. Neurochem Res 36:2409–2416

    Article  CAS  PubMed  Google Scholar 

  40. Komitova M, Xenos D, Salmaso N, Tran KM, Brand T, Schwartz ML, Ment L, Vaccarino FM (2013) Hypoxia-induced developmental delays of inhibitory interneurons are reversed by environmental enrichment in the postnatal mouse forebrain. J Neurosci 33:13375–13387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grants 81172094 and 8110186 from the National Science Foundation of China, Grant 2011-WS-005 from the Six Talents Peak Foundation of Jiangsu Province.

Conflict of interest

We declare that we have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Liang.

Additional information

Liang Yuan and Jing Wu have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Wu, J., Liu, J. et al. Intermittent Hypoxia-Induced Parvalbumin-Immunoreactive Interneurons Loss and Neurobehavioral Impairment is Mediated by NADPH-Oxidase-2. Neurochem Res 40, 1232–1242 (2015). https://doi.org/10.1007/s11064-015-1586-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1586-1

Keywords

Navigation