Skip to main content
Log in

Downregulation of Hippocampal GABA after Hypoxia-Induced Seizures in Neonatal Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This study aims to determine the expression of Gamma-aminobutyric acid (GABA) following hypoxia in neonatal rats and explore how it may increase susceptibility to epilepsy later in life. A modified model of neonatal hypoxia-induced epileptic susceptibility was simulated by 17 min of hypoxia (5% O2 and 95% N2) in postnatal day (P) 10 rats. Hippocampal glutamate decarboxylase (GAD) and parvalbumin (PV) during the development with or without hypoxia were examined using immunohistochemistry. No detectable neuronal loss was observed in the hippocampus either immediately or 14 days after hypoxia. During the development GAD- and PV-immunoreactivity increased substantially during P 11–13 and reached mature expression in the control rats, and decreased significantly at different time points except for a transient increase during P 11–13 in the hypoxic groups. Our study indicates that downregulation of hippocampal GABA after hypoxia-induced seizures in neonatal rats may contribute to higher epileptic susceptibility in later life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aicardi J (2008) Overview: neonatal syndromes. In: Engel J Jr, Pedley TA (eds) Epilepsy: a comprehensive textbook, vol III, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, pp 2283–2285

  2. Sanchez RM, Jensen FE (2006) Modeling hypoxia-induced seizures and hypoxic encephalopathy in the neonatal period. In: Pitkänen A, Schwartzkroin PA, Moshé SL (eds) Models of seizures and epilepsy. Academic Press, Burlington, pp 323–331

    Google Scholar 

  3. Painter MJ, Scher MS, Stein AD et al (1999) Phenobarbital compared with phenytoin for the treatment of neonatal seizures. N Engl J Med 341:485–489

    Article  PubMed  CAS  Google Scholar 

  4. Jensen FE, Applegate CD, Holtzman D et al (1991) Epileptogenic effect of hypoxia in the immature rodent brain. Ann Neurol 29:629–637

    Article  PubMed  CAS  Google Scholar 

  5. Jensen FE, Applegate C, Burchfiel J et al (1991) Differential effects of perinatal hypoxia and anoxia on long term seizure susceptibility in the rat. Life Sci 49:399–407

    Article  PubMed  CAS  Google Scholar 

  6. Jensen FE, Holmes GL, Lombroso CT et al (1992) Age-dependent changes in long-term seizure susceptibility and behavior after hypoxia in rats. Epilepsia 33:971–980

    Article  PubMed  CAS  Google Scholar 

  7. Bradford HF (1995) Glutamate, GABA and epilepsy. Prog Neurobiol 47:477–511

    Article  PubMed  CAS  Google Scholar 

  8. Sanchez RM, Dai W, Levada RE et al (2005) AMPA/kainate receptor-mediated downregulation of GABAergic synaptic transmission by calcineurin after seizures in the developing rat brain. J Neurosci 25:3442–3451

    Article  PubMed  CAS  Google Scholar 

  9. Sanchez RM, Justice JA, Zhang K (2007) Persistently decreased basal synaptic inhibition of hippocampal CA1 pyramidal neurons after neonatal hypoxia-induced seizures. Dev Neurosci 29:159–167

    Article  PubMed  CAS  Google Scholar 

  10. Li K, Xu E (2008) The role and the mechanism of gamma-aminobutyric acid during central nervous system development. Neurosci Bull 24:195–200

    Article  PubMed  Google Scholar 

  11. Babb TL, Pretorius JK, Kupfer WR et al (1989) Glutamate decarboxylase-immunoreactive neurons are preserved in human epileptic hippocampus. J Neurosci 9:2562–2574

    PubMed  CAS  Google Scholar 

  12. Somogyi P, Hodgson AJ, Smith AD et al (1984) Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecystokinin-immunoreactive material. J Neurosci 4:2590–2603

    PubMed  CAS  Google Scholar 

  13. Pauls TL, Cox JA, Berchtold MW (1996) The Ca2+-binding proteins parvalbumin and oncomodulin and their genes: new structural and functional findings. Biochim Biophys Acta 1306:39–54

    PubMed  Google Scholar 

  14. Fuchs EC, Zivkovic AR, Cunningham MO et al (2007) Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53:591–604

    Article  PubMed  CAS  Google Scholar 

  15. Schwaller B, Tetko IV, Tandon P et al (2004) Parvalbumin deficiency affects network properties resulting in increased susceptibility to epileptic seizures. Mol Cell Neurosci 25:650–663

    Article  PubMed  CAS  Google Scholar 

  16. Mann EO, Paulsen O (2007) Role of GABAergic inhibition in hippocampal network oscillations. Trends Neurosci 30:343–349

    Article  PubMed  CAS  Google Scholar 

  17. Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8:45–56

    Article  PubMed  CAS  Google Scholar 

  18. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294

    Article  PubMed  CAS  Google Scholar 

  19. Aujla PK, Fetell MR, Jensen FE (2009) Talampanel suppresses the acute and chronic effects of seizures in a rodent neonatal seizure model. Epilepsia 50:694–701

    Article  PubMed  Google Scholar 

  20. Koh S, Tibayan FD, Simpson JN, Jensen FE (2004) NBQX or topiramate treatment after perinatal hypoxia-induced seizures prevents later increases in seizure-induced neuronal injury. Epilepsia 45:569–575

    Article  PubMed  CAS  Google Scholar 

  21. Jensen FE, Wang C (1996) Hypoxia-induced hyperexcitability in vivo and in vitro in the immature hippocampus. Epilepsy Res 26:131–140

    Article  PubMed  CAS  Google Scholar 

  22. Jiruska P, Csicsvari J, Powell AD et al (2010) High-frequency network activity, global increase in neuronal activity, and synchrony expansion precede epileptic seizures in vitro. J Neurosci 30:5690–5701

    Article  PubMed  CAS  Google Scholar 

  23. Jensen FE (1995) An animal model of hypoxia-induced perinatal seizures. Ital J Neurol Sci 16:59–68

    Article  PubMed  CAS  Google Scholar 

  24. Sanchez RM, Koh S, Rio C et al (2001) Decreased glutamate receptor 2 expression and enhanced epileptogenesis in immature rat hippocampus after perinatal hypoxia-induced seizures. J Neurosci 21:8154–8163

    PubMed  CAS  Google Scholar 

  25. Holmes GL (1997) Epilepsy in the developing brain: lessons from the laboratory and clinic. Epilepsia 38:12–30

    Article  PubMed  CAS  Google Scholar 

  26. Lado FA, Sankar R, Lowenstein D et al (2000) Age-dependent consequences of seizures: relationship to seizure frequency, brain damage, and circuitry reorganization. Ment Retard Dev Disabil Res Rev 6:242–252

    Article  PubMed  CAS  Google Scholar 

  27. Ribak CE, Navetta MS (1994) An immature mossy fiber innervation of hilar neurons may explain their resistance to kainate-induced cell death in 15-day-old rats. Brain Res Dev Brain Res 79:47–62

    Article  PubMed  CAS  Google Scholar 

  28. Yang Y, Tandon P, Liu Z et al (1998) Synaptic reorganization following kainic acid-induced seizures during development. Brain Res Dev Brain Res 107:169–177

    Article  PubMed  CAS  Google Scholar 

  29. Lado FA, Laureta EC, Moshé SL (2002) Seizure-induced hippocampal damage in the mature and immature brain. Epileptic Disord 4:83–97

    PubMed  Google Scholar 

  30. Liu Z, Stafstrom CE, Sarkisian M et al (1996) Age-dependent effects of glutamate toxicity in the hippocampus. Brain Res Dev Brain Res 97:178–184

    Article  PubMed  CAS  Google Scholar 

  31. Holmes GL (2002) Seizure-induced neuronal injury: animal data. Neurology 59 (9 Suppl 5):S3–S6

  32. Seress L, Ribak CE (1988) The development of GABAergic neurons in the rat hippocampal formation. An immunocytochemical study. Brain Res Dev Brain Res 44:197–209

    Article  PubMed  CAS  Google Scholar 

  33. Popp A, Urbach A, Witte OW et al (2009) Adult and embryonic GAD transcripts are spatiotemporally regulated during postnatal development in the rat brain. PLoS One 4:e4371

    Article  PubMed  Google Scholar 

  34. Seto-Ohshima A, Aoki E, Semba R et al (1990) Appearance of parvalbumin-specific immunoreactivity in the cerebral cortex and hippocampus of the developing rat and gerbil brain. Histochemistry 94:579–589

    Article  PubMed  CAS  Google Scholar 

  35. Solbach S, Celio MR (1991) Ontogeny of the calcium binding protein parvalbumin in the rat nervous system. Anat Embryol (Berl) 184:103–124

    Article  CAS  Google Scholar 

  36. Nitsch R, Bergmann I, Küppers K et al (1990) Late appearance of parvalbumin-immunoreactivity in the development of GABAergic neurons in the rat hippocampus. Neurosci Lett 118:147–150

    Article  PubMed  CAS  Google Scholar 

  37. de Lecea L, del Río JA, Soriano E (1995) Developmental expression of parvalbumin mRNA in the cerebral cortex and hippocampus of the rat. Brain Res Mol Brain Res 32:1–13

    Article  PubMed  Google Scholar 

  38. Ganguly K, Schinder AF, Wong ST et al (2001) GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell 105:521–532

    Article  PubMed  CAS  Google Scholar 

  39. Khazipov R, Khalilov I, Tyzio R et al (2004) Developmental changes in GABAergic actions and seizure susceptibility in the rat hippocampus. Eur J Neurosci 19:590–600

    Article  PubMed  Google Scholar 

  40. Kawaguchi Y, Hama K (1987) Fast-spiking non-pyramidal cells in the hippocampal CA3 region, dentate gyrus and subiculum of rats. Brain Res 425:351–355

    Article  PubMed  CAS  Google Scholar 

  41. Druga R (2009) Neocortical inhibitory system. Folia Biol (Praha) 55:201–217

    CAS  Google Scholar 

  42. Vreugdenhil M, Jefferys JG, Celio MR et al (2003) Parvalbumin-deficiency facilitates repetitive IPSCs and gamma oscillations in the hippocampus. J Neurophysiol 89:1414–1422

    Article  PubMed  Google Scholar 

  43. Khalilov I, Le Van Quyen M, Gozlan H et al (2005) Epileptogenic actions of GABA and fast oscillations in the developing hippocampus. Neuron 48:787–796

    Article  PubMed  CAS  Google Scholar 

  44. Silva AV, Regondi MC, Cipelletti B et al (2005) Neocortical and hippocampal changes after multiple pilocarpine-induced status epilepticus in rats. Epilepsia 46:636–642

    Article  PubMed  Google Scholar 

  45. Dzhala VI, Talos DM, Sdrulla DA et al (2005) NKCC1 transporter facilitates seizures in the developing brain. Nat Med 11:1205–1213

    Article  PubMed  CAS  Google Scholar 

  46. Volpe JJ (2008) Neonatal seizures. In: Neurology of the newborn, 5th edn. Saunders, Philadelphia, pp 203–244

  47. Bergamasco B, Benna P, Ferrero P et al (1984) Neonatal hypoxia and epileptic risk: a clinical prospective study. Epilepsia 25:131–136

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of Guangdong, China (Project 8151018201000035). Our sincere thanks go to Dr. Felicia Chow (Brigham and Women’s Hospital/Massachusetts General Hospital, Harvard University) and Mr. DU Peifeng (Institute for Standardization of Nuclear Industry) for editing this paper. Also, we thank the reviewers for useful comments on an earlier version of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to En Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Zhan, L., Zeng, W. et al. Downregulation of Hippocampal GABA after Hypoxia-Induced Seizures in Neonatal Rats. Neurochem Res 36, 2409–2416 (2011). https://doi.org/10.1007/s11064-011-0565-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0565-4

Keywords

Navigation