Skip to main content
Log in

The Protective Effect of N-Acetylcysteine on Oxidative Stress in the Brain Caused by the Long-Term Intake of Aspartame by Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Long-term intake of aspartame at the acceptable daily dose causes oxidative stress in rodent brain mainly due to the dysregulation of glutathione (GSH) homeostasis. N-Acetylcysteine provides the cysteine that is required for the production of GSH, being effective in treating disorders associated with oxidative stress. We investigated the effects of N-acetylcysteine treatment (150 mg kg−1, i.p.) on oxidative stress biomarkers in rat brain after chronic aspartame administration by gavage (40 mg kg−1). N-Acetylcysteine led to a reduction in the thiobarbituric acid reactive substances, lipid hydroperoxides, and carbonyl protein levels, which were increased due to aspartame administration. N-Acetylcysteine also resulted in an elevation of superoxide dismutase, glutathione peroxidase, glutathione reductase activities, as well as non-protein thiols, and total reactive antioxidant potential levels, which were decreased after aspartame exposure. However, N-acetylcysteine was unable to reduce serum glucose levels, which were increased as a result of aspartame administration. Furthermore, catalase and glutathione S-transferase, whose activities were reduced due to aspartame treatment, remained decreased even after N-acetylcysteine exposure. In conclusion, N-acetylcysteine treatment may exert a protective effect against the oxidative damage in the brain, which was caused by the long-term consumption of the acceptable daily dose of aspartame by rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  1. Butchko HH, Stargel WW, Comer CP, Mayhew DA, Benninger C, Blackburn GL, Sonneville LM, Geha RS, Hertelendy Z, Koestner A, Leon AS, Liepa GU, McMartin KE, Mendenhall CL, Munro IC, Novotny EJ, Renwick AG, Schiffman SS, Schomer DL, Shaywitz BA, Spiers PA, Tephly TR, Thomas JA, Trefz FK (2002) Aspartame: review of safety. Regul Toxicol Pharmacol 35:S1–S93

    Article  PubMed  Google Scholar 

  2. Oyama Y, Sakai H, Arata T, Okano Y, Akaike N, Sakai K, Noda K (2002) Cytotoxic effects of methanol, formaldehyde, and formate on dissociated rat thymocytes: a possibility of aspartame toxicity. Cell Biol Toxicol 18:43–50

    Article  CAS  PubMed  Google Scholar 

  3. Humphries P, Pretorius E, Naudé H (2008) Direct and indirect cellular effects of aspartame on the brain. Eur J Clin Nutr 62:451–462

    Article  CAS  PubMed  Google Scholar 

  4. Ranney RE, Oppermann JA, Muldoon E, McMahon FG (1976) Comparative metabolism of aspartame in experimental animals and humans. J Toxicol Environ Health 2:441–451

    Article  CAS  PubMed  Google Scholar 

  5. Krebs MO (1992) Excitatory amino acids: a new class of neurotransmitters: pharmacology and functional properties. Encephale 18:271–279

    CAS  PubMed  Google Scholar 

  6. Fernstrom JD, Fernstrom MH, Gillis MA (1983) Acute effects of aspartame on large neutral amino acid and mono-amines in rat brain. Life Sci 32:1651–1658

    Article  CAS  PubMed  Google Scholar 

  7. Massachusetts Medical Society (1984) Evaluation of consumer complaints related to aspartame use. Morb Mortal Wkly Rep 33:605–607

    Google Scholar 

  8. Stegink LD, Brummel MC, Filer LJ, Baker GL (1983) Blood methanol concentrations in one year old infants administered graded doses of aspartame. J Nutr 113:1600–1606

    CAS  PubMed  Google Scholar 

  9. Trocho C, Pardo R, Rafecas I, Virgili J, Remesar X, Fernández-López JA, Amemany M (1998) Formaldehyde derived from dietary aspartame binds to tissue components in vivo. Life Sci 63:337–349

    Article  CAS  PubMed  Google Scholar 

  10. European Food Safety Authority (2006) EFSA assesses new aspartame study and reconfirms its safety. European Food Safety Authority, Bologna

    Google Scholar 

  11. Mourad IM, Noor NA (2011) Aspartame (a widely used artificial sweetener) and oxidative stress in the rat cerebral cortex. Int J Pharm Biomed Sci 2:4–10

    Google Scholar 

  12. Abdel-Salam OME, Salem NA, El-Shamarka MES, Hussein JS, Ahmed NAS, El-Nagar MES (2012) Studies on the effects of aspartame on memory and oxidative stress in brain of mice. Eur Rev Med Pharmacol Sci 16:2092–2210

    CAS  PubMed  Google Scholar 

  13. Abhilash M, Sauganth PMV, Varghese MV, Nair RH (2013) Long-term consumption of aspartame and brain antioxidant defense status. Drug Chem Toxicol 36:135–140

    Article  CAS  PubMed  Google Scholar 

  14. Iyyaswamy A, Rathinasamy S (2012) Effect of chronic exposure to aspartame on oxidative stress in the brain of albino rats. J Biosci 37:679–688

    Article  CAS  PubMed  Google Scholar 

  15. Ruiz NAL, Mejía AV, Hernández-Martínez NL, Gómez-Garduño J, Dorado-González VM, Osnaya-Brizuela N, García-Álvarez R, Barragán-Mejía G, Guzmán DC (2008) Efecto de aspartame, fenilalanina y ácido aspártico sobre los niveles de glutatión y peroxidación de lípidos en cérebro de rata. Arch Neurocien (Mex) 13:79–83

    Google Scholar 

  16. Farbiszewski R, Witek A, Skrzydlewska E (2000) N-Acetylcysteine or trolox derivate mitigate the toxic effects of methanol on the antioxidant system of rat brain. Toxicology 156:47–55

    Article  CAS  PubMed  Google Scholar 

  17. Samuni Y, Goldstein S, Dean OM, Berk M (2013) The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta 1830:4117–4129

    Article  CAS  PubMed  Google Scholar 

  18. Sies H (1999) Glutathione and its role in cellular functions. Free Radic Biol Med 27:916–921

    Article  CAS  PubMed  Google Scholar 

  19. Jiang ZY, Woollard ACS, Wolff SP (1991) Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method. Lipid 26:853–856

    Article  CAS  Google Scholar 

  20. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–309

    Article  CAS  PubMed  Google Scholar 

  21. Reznick AZ, Packer L (1994) Carbonyl assay for determination of oxidatively modified proteins. Methods Enzymol 233:357–363

    Article  CAS  PubMed  Google Scholar 

  22. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  PubMed  Google Scholar 

  23. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–625

    CAS  PubMed  Google Scholar 

  24. Flohé L, Gunzler WA (1984) Assays of glutathione peroxidase. In: Packer L (ed) Methods in enzymology. Academic Press, San Diego, pp 114–121

    Google Scholar 

  25. Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–499

    Article  CAS  PubMed  Google Scholar 

  26. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  27. Ellman L (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  28. Roe JH, Kuether CA (1942) A color reaction for dehydroascorbic acid useful in the determination of vitamin C. Science 95:77

    Article  CAS  PubMed  Google Scholar 

  29. Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266

    Article  CAS  PubMed  Google Scholar 

  30. Lowry OH, Rosebrough MJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin reagent. J Biol Chem 193:265–269

    CAS  PubMed  Google Scholar 

  31. Kim JY, Seo J, Cho KH (2011) Aspartame-fed zebrafish exhibit acute deaths with swimming defects and saccharin-fed zebrafish have elevation of cholesteryl ester transfer protein activity in hypercholesterolemia. Food Chem Toxicol 49:2899–2905

    Article  CAS  PubMed  Google Scholar 

  32. Collison KS, Makhoul NJ, Zaidi MZ, Al-Rabiah R, Inglis A, Andres BL, Ubungen R, Shoukri M, Al-Mohanna FA (2012) Interactive effects of neonatal exposure to monosodium glutamate and aspartame on glucose homeostasis. Nutr Metab (Lond) 9:58

    Article  CAS  Google Scholar 

  33. Ferland A, Brassard P, Poirier P (2007) Is aspartame really safer in reducing the risk of hypoglycemia during exercise in patients with type 2 diabetes? Diabetes Care 30:e59

    Article  PubMed  Google Scholar 

  34. Nuttall FQ, Schweim KJ, Gannon MC (2006) Effect of orally administered phenylalanine with and without glucose on insulin, glucagon and glucose concentrations. Horm Metab Res 38:518–523

    Article  CAS  PubMed  Google Scholar 

  35. Piccardo MG, Rosa M, Russo L (1983) The effects of a load of phenylalanine on glucose metabolism. Boll Soc Ital Bio Sper 59:167–170

    CAS  Google Scholar 

  36. Christian B, McConnaughey K, Bethea E, Brantley S, Coffey A, Hammond L, Harrell S, Metcalf K, Muehlenbein D, Spruil W, Brinson L, McConnaughey M (2004) Chronic aspartame affects T-maze performance, brain cholinergic receptors and Na+K+-ATPase in rats. Pharmacol Biochem Behav 78:121–127

    Article  CAS  PubMed  Google Scholar 

  37. Takahashi A, Kishi E, Ishimaru H, Ikarashi Y, Maruyama Y (1998) Stimulation of rat hypothalamus by microdialysis with K + : increase of ACh release elevates plasma glucose. Am J Physiol 275:R1647–R1653

    CAS  PubMed  Google Scholar 

  38. Shigeta H, Yoshida T, Nakai M, Mori H, Nishioka H, Kajiyama S, Kitagawa Y, Kanatsuna T, Kondo M (1985) Effects of aspartame on diabetic rats and diabetic patients. J Nutr Sci Vitaminol (Tokyo) 31:533–540

    Article  CAS  Google Scholar 

  39. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  CAS  PubMed  Google Scholar 

  40. Simintzi I, Schulpis KH, Angelogianni P, Liapi C, Tsakiris S (2008) l-cysteine and glutathione restore the modulation of rat frontal cortex Na+, K+-ATPase activity induced by aspartame metabolites. Food Chem Toxicol 46:2074–2079

    Article  CAS  PubMed  Google Scholar 

  41. Finamor IA, Saccol EM, Gabriel D, Ourique GM, Riffel AP, Konrad SP, Belló-Klein A, Partata W, Baldisserotto B, Llesuy SF, Pavanato MA (2012) Effects of parboiled rice diet on oxidative stress parameters in kidney of rats with streptozotocin-induced diabetes. J Med Food 15:598–604

    Article  CAS  PubMed  Google Scholar 

  42. Rice ME, Russo-Menna I (1998) Differential compartmentalization of brain ascorbate and glutathione between neuron and glia. Neuroscience 82:1213–1223

    Article  CAS  PubMed  Google Scholar 

  43. Skrzydlewska E, Witek A, Farbiszewski R (1998) The comparison of the antioxidant defense potential of brain to liver of rats after methanol ingestion. Comp Biochem Physiol C 120:289–294

    Article  CAS  PubMed  Google Scholar 

  44. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  45. Pigeolet E, Corbisier P, Houbion A, Lambert D, Michiels C, Raes M, Zachary MD, Remacle J (1990) Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals. Mech Ageing Dev 15:283–297

    Article  Google Scholar 

  46. Jain A, Mårtensson J, Stole E, Auld PA, Meister A (1991) Glutathione deficiency leads to mitochondrial damage in brain. Proc Natl Acad Sci USA 88:1913–1917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. De Flora S, Bennicelli C, Camoirano A, Serra D, Romano M, Rossi GA, Morelli A, De Flora A (1985) In vivo effects of N-acetylcysteine on glutathione metabolism and on the biotransformation of carcinogenic and or mutagenic compounds. Carcinogenesis 6:1735–1745

    Article  PubMed  Google Scholar 

  48. Yang Y, Cheng JZ, Singhal SS, Saini M, Pandya U, Awasthi S (2001) Role of glutathione S-transferase in protection against lipid peroxidation. Overexpression of hGSTA2-2 in K562 cells protects against hydrogen peroxide-induced apoptosis and inhibits JNK and caspase 3 activation. J Biol Chem 276:19220–19230

    Article  CAS  PubMed  Google Scholar 

  49. Simintzi I, Schulpis KH, Angelogianni P, Liapi C, Tsakiris S (2007) l-cysteine and glutathione restore the reduction of rat hippocampal Na+, K+-ATPase activity induced by aspartame metabolites. Toxicology 237:177–183

    Article  CAS  PubMed  Google Scholar 

  50. Meister A (1983) Selective modification of glutathione metabolism. Science 220:472–477

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Conselho Nacional de Desenvolvimento Tecnológico (CNPq), to the Comissão de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and to the Fundo de Incentivo a Pesquisa da Universidade Federal de Santa Maria (FIPE-UFSM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Pavanato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finamor, I.A., Ourique, G.M., Pês, T.S. et al. The Protective Effect of N-Acetylcysteine on Oxidative Stress in the Brain Caused by the Long-Term Intake of Aspartame by Rats. Neurochem Res 39, 1681–1690 (2014). https://doi.org/10.1007/s11064-014-1360-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1360-9

Keywords

Navigation