Skip to main content
Log in

BASP1 and Its N-end Fragments (BNEMFs) Dynamics in Rat Brain During Development

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Protein BASP1 was discovered in brains of mammals and birds. In presynaptic area of synapses, BASP1 is attached to plasma membrane owing to N-terminal myristoylation as well as to the positively charged “effecter domain”. BASP1 interactions with other proteins as well as with lipids contribute to membrane traffic, axon outgrowth and synaptic plasticity. BASP1 is present also in other tissues, where it was found not only in cytoplasm, but also in nucleus. Nuclear BASP1 suppresses activity of transcription factor WT1 and acts as tumor suppressor. BASP1 deficiency in a cell leads to its transformation. Previously it was shown that in BASP1 samples prepared from different animals and different tissues, six BASP1 N-end myristoylated fragments (BNEMFs) are present. Together, they amount to 30 % of the whole molecules. BNEMFs presence in different species and tissues demonstrates their physiological significance. However BNEMFs remain unexplored. In this paper, the time of appearance and dynamics of both BASP1 and BNEMFs during rat development from embryo to adult animals were determined. In rat brain, the amounts of all BASP1 forms per cell systematically increase during development and remain at the highest levels in adult animals. BNEMFs appear during embryogenesis non-simultaneously and accumulate with different dynamics. These results say for formation of six BNEMFs in the course of different processes and, possibly, using different mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BNEMFs:

BASP1 N-End Myristoylated Fragments

PIP2 :

Phosphatidylinositol 4,5-bisphosphate

References

  1. Mosevitsky MI, Novitskaya VA, Plekhanov AYu, Skladchikova GYu (1992) A group of acid soluble brain proteins that includes two forms of neuronal protein GAP-43. Dokladi Akademii Nauk USSR 324:711–714

    Google Scholar 

  2. Maekawa S, Maekawa M, Hattori S, Nakamura S (1993) Purification and molecular cloning of anovel acidic calmodulin-binding protein from rat brain. J Biol Cem 268:13703–13709

    CAS  Google Scholar 

  3. Mosevitsky MI, Novitskaya VA, Plekhanov AY, Skladchikova GY (1994) Neuronal protein GAP-43 is a member of novel group of brain acid-soluble proteins (BASPs). Neurosci Res 19:223–228

    Article  PubMed  CAS  Google Scholar 

  4. Widmer F, Caroni P (1990) Identification, localization, and primary structure of CAP-23, a particle-bound cytosolic protein of early development. J Cell Biol 111:3035–3047

    Article  PubMed  CAS  Google Scholar 

  5. Mosevitsky MI, Capony JP, Skladchikova GY, Novitskaya VA, Plekhanov AY, Zakharov VV (1997) The BASP1 family of myristoylated proteins abundant in axonal termini. Primary structure analysis and physico-chemical properties. Biochimie 79:373–384

    Article  PubMed  CAS  Google Scholar 

  6. Mosevitsky MI (2005) Nerve ending “signal” proteins GAP-43, MARCKS, and BASP1. Int Rev Cytol 245:245–325

    Article  PubMed  CAS  Google Scholar 

  7. Epand RM, Maekawa S, Yip CM, Epand RF (2001) Protein-induced formation of cholesterol-rich domains. Biochemistry 40:10514–10521

    Article  PubMed  CAS  Google Scholar 

  8. Shaw JE, Epand RF, Sinnathamby K, Li Z, Bittman R, Epand RM, Yip CM (2006) Tracking peptide-membrane interactions: insights from in situ coupled confocal-atomic force microscopy imaging of NAP-22 peptide insertion and assembly. J Struct Biol 155:458–469

    Article  PubMed  CAS  Google Scholar 

  9. Matsubara M, Nakatsu T, Kato H, Taniguchi H (2004) Crystal structure of a myristoylated CAP-23/NAP-22 N-terminal domain complexed with Ca2+/calmodulin. EMBO J23:712–718

    Google Scholar 

  10. Takaichi R, Odagaki S, Kumanogoh H, Nakamura S, Morita M, Maekawa S (2012) Inhibitory effect of NAP-22 on the phosphatase activity of synaptojanin-1. J Neurosci Res 90:21–27. doi:10.1002/jnr.22740

    Article  PubMed  CAS  Google Scholar 

  11. Odagaki S, Kumanogoh H, Nakamura S, Maekawa S (2009) Biochemical interaction of an actin-capping protein, CapZ, with NAP-22. J Neurosci Res 87:1980–1985

    Article  PubMed  CAS  Google Scholar 

  12. Zakharov VV, Mosevitsky MI (2010) Oligomeric structure of brain abundant proteins GAP-43 and BASP1. J Struct Biol 170:470–483

    Article  PubMed  CAS  Google Scholar 

  13. Ostroumova OS, Schagina LV, Mosevitsky MI, Zakharov VV (2011) Ion channel activity of brain abundant protein BASP1 in planar lipid bilayers. FEBS J 278:461–469

    Article  PubMed  CAS  Google Scholar 

  14. Sanchez-Niño MD, Sanz AB, Lorz C, Gnirke A, Rastaldi MP, Nair V, Egido J, Ruiz-Ortega M, Kretzler M, Ortiz A (2010) BASP1 promotes apoptosis in diabetic nephropathy. J Am Soc Nephrol 21:610–621

    Article  PubMed  Google Scholar 

  15. Caroni P (1997) Intrinsic neuronal determinants that promote axonal sprouting and elongation. BioEssays 19:767–775

    Article  PubMed  CAS  Google Scholar 

  16. Korshunova I, Caroni P, Kolkova K, Berezin V, Bock E, Walmod PS (2008) Characterization of BASP1-mediated neurite outgrowth. J Neurosci Res 86:2201–2213

    Article  PubMed  CAS  Google Scholar 

  17. Novitskaya VA, Skladchikova GY, Plekhanov AY, Mosevitsky MI (1994) Detection of head brain protein BASP1 in rat reproduction tissue. Dokladi Akademii Nauk USSR 335:101–103

    CAS  Google Scholar 

  18. Mosevitsky M, Silicheva I (2011) Subcellular and regional location of “brain” proteins BASP1 and MARCKS in kidney and testis. Acta Histochem 113:13–17

    Article  PubMed  CAS  Google Scholar 

  19. Carpenter KJ, Hill KJ, Charalambous M, Wagner KJ, Lahiri D, James DI, Anderson JS, Schumacher V, Roger-Pokora B, Mann M, Ward A, Roberts SGE (2004) BASP1 is a transcriptional cosuppressor for the Wilms’ tumor suppressor protein WT1. Molec Cell Biol 24:537–549

    Article  PubMed  CAS  Google Scholar 

  20. Bagchi M, Kousis S, Maisel H (2008) BASP1 in the lens. J Cell Biochem 105:699–702

    Article  PubMed  CAS  Google Scholar 

  21. Zakharov VV, Capony J-P, Derancourt J, Kropotova ES, Novitskaya VA, Bogdanova MN, Mosevitsky MI (2003) Natural N-terminal fragments of brain abundant myristoylated protein BASP1. Biochim Biophys Acta 1622:14–19

    Article  PubMed  CAS  Google Scholar 

  22. Mosevitsky MI, Snigirevskaya ES, Komissarchik YY (2012) Immunoelectron microscopic study of BASP1 and MARCKS location in the early and late rat spermatids. Acta Histochem 114:237–243

    Article  PubMed  CAS  Google Scholar 

  23. Wagner KJ, Roberts SG (2004) Transcriptional regulation by the Wilms’ tumour suppressor protein WT1. Biochem Soc Trans 32:932–935

    Article  PubMed  CAS  Google Scholar 

  24. Hartl M, Nist A, Khan MI, Valovka T, Bister K (2009) Inhibition of Myc-induced cell transformation by brain acid-soluble protein 1 (BASP1). Proc Natl Acad Sci USA 106:5604–5609

    Article  PubMed  CAS  Google Scholar 

  25. Goodfellow SJ, Rebello MR, Toska E, Zeef LA, Rudd SG, Medler KF, Roberts SG (2011) WT1 and its transcriptional cofactor BASP1 redirect the differentiation pathway of an established blood cell line. Biochem J 435:113–125

    Article  PubMed  CAS  Google Scholar 

  26. Moribe T, Iizuka N, Miura T, Stark M, Tamatsukuri S, Ishitsuka H, Hamamoto Y, Sakamoto K, Tamesa T, Oka M (2008) Identification of novel aberrant methylation of BASP1 and SRD5A2 for early diagnosis of hepatocellular carcinoma by genome-wide search. Int J Oncol 33:949–958

    PubMed  CAS  Google Scholar 

  27. Tsunedomi R, Ogawa Y, Iizuka N, Sakamoto K, Tamesa T, Moribe T, Oka M (2010) The assessment of methylated BASP1 and SRD5A2 levels in the detection of early hepatocellular carcinoma. Int J Oncol 36:205–212

    PubMed  CAS  Google Scholar 

  28. Green LM, Wagner KJ, Campbell HA, Addison K, Roberts SG (2009) Dynamic interaction between WT1 and BASP1 in transcriptional regulation during differentiation. Nucleic Acids Res 37:431–440

    Article  PubMed  CAS  Google Scholar 

  29. Toska E, Campbell HA, Shandilya J, Goodfellow SJ, Shore P, Medler KF, Roberts SG (2012) Repression of transcription by WT1-BASP1 requires the myristoylation of BASP1 and the PIP2-dependent recruitment of histone deacetylase. Cell Rep 2:462–469

    Article  PubMed  CAS  Google Scholar 

  30. Panyim S, Chalkley R (1969) High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys 130:337–346

    Article  PubMed  CAS  Google Scholar 

  31. Gjerset R, Gorka C, Hasthorpe S, Lawrence JJ, Eisen H (1982) Developmental and hormonal regulation of protein H1 degrees in rodents. Proc Natl Acad Sci USA 79:2333–2337

    Article  PubMed  CAS  Google Scholar 

  32. Mosevitsky MI, Konovalova ES, Bitchevaya NK, Klementiev BI (2001) Not growth associated protein GAP-43 (B-50), but its fragment GAP-43-3 (B-60) predominates in rat brain during development. Neurosci Lett 297:49–52

    Article  PubMed  CAS  Google Scholar 

  33. Zakharov VV, Mosevitsky MI (2007) M-calpain-mediated cleavage of GAP-43 near Ser41 is negatively regulated by protein kinase C, calmodulin and calpain-inhibiting fragment GAP-43-3. J Neurochem 101:1539–1551

    Article  PubMed  CAS  Google Scholar 

  34. Keiler KC (2008) Biology of trans-translation. Annu Rev Microbiol 62:133–151

    Article  PubMed  CAS  Google Scholar 

  35. Blanc V, Davidson NO (2003) C-to-U RNA editing: mechanisms leading to genetic diversity. J Biol Chem 278:1395–1398

    Google Scholar 

  36. Aphasizhev R, Aphasizheva I (2011) Uridine insertion/deletion editing in trypanosomes: a playground for RNA-guided information transfer. Wiley Interdiscip Rev RNA 5:669–685

    Article  Google Scholar 

  37. Hartkamp J, Carpenter B, Roberts SG (2010) The Wilms’ tumor suppressor protein WT1 is processed by the serine protease HtrA2/Omi. Mol Cell 37:159–171

    Article  PubMed  CAS  Google Scholar 

  38. Zlatanova J, Doenecke D (1994) Histone H1 zero: a major player in cell differentiation? FASEB J 15:1260–1268

    Google Scholar 

Download references

Acknowledgments

The authors thank Vladislav Zakharov for valuable discussions and Natalja Bitchevaya for assistance. We are grateful to E.V. Chikhirzhina and E.I. Kostyleva (Institute of Cytology, Russian Academy of Sciences) for providing us with antibodies against gistone H1. This study was supported by Russian Basic Investigations Foundation (grant 12-04-00505-a to Mark Mosevitsky).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Mosevitsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kropotova, E., Klementiev, B. & Mosevitsky, M. BASP1 and Its N-end Fragments (BNEMFs) Dynamics in Rat Brain During Development. Neurochem Res 38, 1278–1284 (2013). https://doi.org/10.1007/s11064-013-1035-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1035-y

Keywords

Navigation