Skip to main content
Log in

Mitophagy in Ischaemia/Reperfusion Induced Cerebral Injury

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Mitochondrial autophagy (Mitophagy), the specific autophagic elimination of mitochondria, has been related with several forms of degenerative disease and mitochondrial dysfunction. It is involved in multiple cellular processes. In addition to one of its established key roles in the maintenance of normal cellular phenotype and function, there is growing interest in the concept that targeted modulation of mitophagy may reduce cerebral ischaemia/reperfusion injury. Induction of mitophagy results in selective clearance of damaged mitochondria in cells. In response to stress such as ischaemia/reperfusion, prosurvival and prodeath pathways are concomitantly activated in neuronal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42

    Article  PubMed  CAS  Google Scholar 

  2. Mizushima N et al (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075

    Article  PubMed  CAS  Google Scholar 

  3. Pan T et al (2008) The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 131(Pt 8):1969–1978

    Article  PubMed  Google Scholar 

  4. Pattingre S et al (2008) Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 90(2):313–323

    Article  PubMed  CAS  Google Scholar 

  5. McCray BA, Taylor JP (2008) The role of autophagy in age-related neurodegeneration. Neurosignals 16(1):75–84

    Article  PubMed  CAS  Google Scholar 

  6. Yang YP et al (2005) Molecular mechanism and regulation of autophagy. Acta Pharmacol Sin 26(12):1421–1434

    Article  PubMed  CAS  Google Scholar 

  7. Liu K et al (2011) Activation of growth hormone secretagogue type 1a receptor inhibits T-type Ca2+ channel currents through pertussis toxin-sensitive novel protein kinase C pathway in mouse spermatogenic cells. Cell Physiol Biochem 27(5):613–624

    Article  PubMed  Google Scholar 

  8. Liu K et al (2008) Autophagic degradation pathway and possible mechanisms of mutant-type α-synuclein. Chin J Neurol 41(1):51–56

    Google Scholar 

  9. Zeng M, Zhou JN (2008) Roles of autophagy and mTOR signaling in neuronal differentiation of mouse neuroblastoma cells. Cell Signal 20(4):659–665

    Article  PubMed  CAS  Google Scholar 

  10. Cardenas ME et al (1999) The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13(24):3271–3279

    Article  PubMed  CAS  Google Scholar 

  11. Sarkar S et al (2009) Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 16(1):46–56

    Article  PubMed  CAS  Google Scholar 

  12. Sarkar S et al (2007) Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat Chem Biol 3(6):331–338

    Article  PubMed  CAS  Google Scholar 

  13. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  PubMed  CAS  Google Scholar 

  14. Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443(7113):780–786

    Article  PubMed  CAS  Google Scholar 

  15. Liu K et al (2013) Therapeutic effects of rapamycin on MPTP-induced Parkinsonism in mice. Neurochem Res 38(1):201–207

    Article  PubMed  CAS  Google Scholar 

  16. Liu K et al (2012) Protection against neurotoxicity by an autophagic mechanism. Braz J Med Biol Res 45(5):401–407

    Article  PubMed  CAS  Google Scholar 

  17. Tolkovsky AM (2009) Mitophagy. Biochim Biophys Acta 1793(9):1508–1515

    Article  PubMed  CAS  Google Scholar 

  18. Kubli DA, Gustafsson AB (2012) Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 111(9):1208–1221

    Article  PubMed  CAS  Google Scholar 

  19. Liu W et al (2012) Dynamic changes of mitochondrial fusion and fission proteins after transient cerebral ischemia in mice. J Neurosci Res 90(6):1183–1189

    Article  PubMed  CAS  Google Scholar 

  20. Henze K, Martin W (2003) Evolutionary biology: essence of mitochondria. Nature 426(6963):127–128

    Article  PubMed  CAS  Google Scholar 

  21. Vosler PS et al (2009) Mitochondrial targets for stroke: focusing basic science research toward development of clinically translatable therapeutics. Stroke 40(9):3149–3155

    Article  PubMed  CAS  Google Scholar 

  22. Menzies RA, Gold PH (1971) The turnover of mitochondria in a variety of tissues of young adult and aged rats. J Biol Chem 246(8):2425–2429

    PubMed  CAS  Google Scholar 

  23. Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8(1):3–5

    Article  PubMed  CAS  Google Scholar 

  24. Dengjel J, Kristensen AR, Andersen JS (2008) Ordered bulk degradation via autophagy. Autophagy 4(8):1057–1059

    PubMed  CAS  Google Scholar 

  25. Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441(2):523–540

    Article  PubMed  CAS  Google Scholar 

  26. Gomes LC, Scorrano L (2013) Mitochondrial morphology in mitophagy and macroautophagy. Biochim Biophys Acta 1833(1):205–212

    Article  PubMed  CAS  Google Scholar 

  27. Austriaco NR Jr (1996) Review: to bud until death: the genetics of ageing in the yeast, Saccharomyces. Yeast 12(7):623–630

    Article  PubMed  CAS  Google Scholar 

  28. Kissova I et al (2004) Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem 279(37):39068–39074

    Article  PubMed  CAS  Google Scholar 

  29. Kanki T et al (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17(1):98–109

    Article  PubMed  CAS  Google Scholar 

  30. Okamoto K, Kondo-Okamoto N, Ohsumi Y (2009) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17(1):87–97

    Article  PubMed  CAS  Google Scholar 

  31. Aoki Y et al (2011) Phosphorylation of Serine 114 on Atg32 mediates mitophagy. Mol Biol Cell 22(17):3206–3217

    Article  PubMed  CAS  Google Scholar 

  32. Ding WX, Yin XM (2012) Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem 393(7):547–564

    Article  PubMed  CAS  Google Scholar 

  33. Egan DF et al (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331(6016):456–461

    Article  PubMed  CAS  Google Scholar 

  34. Sandoval H et al (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454(7201):232–235

    Article  PubMed  CAS  Google Scholar 

  35. Schweers RL et al (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 104(49):19500–19505

    Article  PubMed  CAS  Google Scholar 

  36. Novak I (2012) Mitophagy: a complex mechanism of mitochondrial removal. Antioxid Redox Signal 17(5):794–802

    Article  PubMed  CAS  Google Scholar 

  37. Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12(1):9–14

    Article  PubMed  CAS  Google Scholar 

  38. Ermak G et al (2012) Chronic expression of RCAN1-1L protein induces mitochondrial autophagy and metabolic shift from oxidative phosphorylation to glycolysis in neuronal cells. J Biol Chem 287(17):14088–14098

    Article  PubMed  CAS  Google Scholar 

  39. Scherz-Shouval R, Elazar Z (2011) Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 36(1):30–38

    Article  PubMed  CAS  Google Scholar 

  40. Rambold AS, Lippincott-Schwartz J (2011) Mechanisms of mitochondria and autophagy crosstalk. Cell Cycle 10(23):4032–4038

    Article  PubMed  CAS  Google Scholar 

  41. Hossmann KA (2006) Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol 26(7–8):1057–1083

    PubMed  Google Scholar 

  42. Tian F et al (2010) In vivo imaging of autophagy in a mouse stroke model. Autophagy 6(8):1107–1114

    Article  PubMed  Google Scholar 

  43. Carloni S, Buonocore G, Balduini W (2008) Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis 32(3):329–339

    Article  PubMed  CAS  Google Scholar 

  44. Balduini W, Carloni S, Buonocore G (2012) Autophagy in hypoxia-ischemia induced brain injury. J Matern Fetal Neonatal Med 25(Suppl 1):30–34

    Article  PubMed  CAS  Google Scholar 

  45. Rami A, Langhagen A, Steiger S (2008) Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol Dis 29(1):132–141

    Article  PubMed  CAS  Google Scholar 

  46. Wieloch T, Siesjo BK (1982) Ischemic brain injury: the importance of calcium, lipolytic activities, and free fatty acids. Pathol Biol (Paris) 30(5):269–277

    CAS  Google Scholar 

  47. Shi R et al (2012) Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci Ther 18(3):250–260

    Article  PubMed  CAS  Google Scholar 

  48. Carloni S et al (2010) Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy 6(3):366–377

    Article  PubMed  CAS  Google Scholar 

  49. Sheng R et al (2010) Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning. Autophagy 6(4):482–494

    Article  PubMed  CAS  Google Scholar 

  50. Puyal J, Clarke PG (2009) Targeting autophagy to prevent neonatal stroke damage. Autophagy 5(7):1060–1061

    Article  PubMed  Google Scholar 

  51. Ten VS, Starkov A (2012) Hypoxic-ischemic injury in the developing brain: the role of reactive oxygen species originating in mitochondria. Neurol Res Int 2012:542976

    PubMed  Google Scholar 

  52. Chen H, Chan DC (2009) Mitochondrial dynamics–fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet 18(2):R169–R176

    Article  PubMed  CAS  Google Scholar 

  53. Besancon E et al (2008) Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol Sci 29(5):268–275

    Article  PubMed  CAS  Google Scholar 

  54. Goldman SJ et al (2010) Autophagy and the degradation of mitochondria. Mitochondrion 10(4):309–315

    Article  PubMed  CAS  Google Scholar 

  55. Scherz-Shouval R, Elazar Z (2007) ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17(9):422–427

    Article  PubMed  CAS  Google Scholar 

  56. Bueler H (2010) Mitochondrial dynamics, cell death and the pathogenesis of Parkinson’s disease. Apoptosis 15(11):1336–1353

    Article  PubMed  Google Scholar 

  57. Wu JJ et al (2009) Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy. Aging (Albany NY) 1(4):425–437

    CAS  Google Scholar 

  58. Pan Y et al (2012) Metabolic regulation, mitochondria and the life-prolonging effect of rapamycin: a mini-review. Gerontology 58(6):524–530

    Article  PubMed  CAS  Google Scholar 

  59. Carloni S et al (2012) Inhibition of rapamycin-induced autophagy causes necrotic cell death associated with Bax/Bad mitochondrial translocation. Neuroscience 203:160–169

    Article  PubMed  CAS  Google Scholar 

  60. Cui D et al (2012) Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia-reperfusion injury in rats. PLoS ONE 7(4):e35324

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the project of National Natural Science Foundation of China (No. 31171014 and No. 30970869), the project of Science and Technology Commission of Shanghai Municipality (No. 09DZ1950400) and Board of Health of Shanghai, China (No. 2008086), the youth projects of National Natural Science Foundation of China (No. 31100783) and Youth Key Project in Shanghai college of Medicine of Fudan University (No. 09-L37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojiang Sun.

Additional information

Kangyong Liu and Yinyi Sun contributed to this work equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, K., Sun, Y., Gu, Z. et al. Mitophagy in Ischaemia/Reperfusion Induced Cerebral Injury. Neurochem Res 38, 1295–1300 (2013). https://doi.org/10.1007/s11064-013-1033-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1033-0

Keywords

Navigation