Skip to main content
Log in

Bilateral Common Carotid Artery Ligation Transiently Changes Brain Lipid Metabolism in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Brain lipid metabolism was studied in rats following permanent bilateral common carotid artery ligation (BCCL), a model for chronic cerebral hypoperfusion. Unesterified (free) fatty acids (uFA) and acyl-CoA concentrations were measured 6 h, 24 h, and 7 days after BCCL or sham surgery, in high energy-microwaved brain. In BCCL compared to sham rats, cytosolic phospholipase A2 (cPLA2) immunoreactivity in piriform cortex, and concentrations of total uFA and arachidonoyl-CoA, an intermediate for arachidonic acid reincorporation into phospholipids, were increased only at 6 h. At 24 h, immunoreactivity for secretory phospholipase A2 (sPLA2), which may regulate blood flow, was increased near cortical and hippocampal blood vessels. BCCL did not affect levels of brain IB4+ microglia, glial fibrillary acidic protein (GFAP)+ astrocytes, cyclooxygenase-2 (COX-2) immunoreactivity at any time, but increased cPLA2 immunoreactivity in one region at 6 h. Thus, BCCL affected brain lipid metabolism transiently, likely because of compensatory sPLA2-mediated vasodilation, without producing evidence of neuroinflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ARA:

Arachidonic acid

BCCL:

Bilateral common carotid artery ligation

cPLA2 :

Cytoplasmic phospholipase A2

sPLA2 :

Secretory phospholipase A2

CBF:

Cerebral blood flow

COX-2:

Cyclooxygenase 2

HRP:

Horseradish peroxidase

IB4 :

Isolectin B4

GFAP:

Glial fibrillary acidic protein

uFA:

Unesterified fatty acid

PGE2 :

Prostaglandin E2

References

  1. de la Torre JC (2006) How do heart disease and stroke become risk factors for Alzheimer’s disease? Neurol Res 28:637–644

    Article  PubMed  Google Scholar 

  2. Kalaria RN (2000) The role of cerebral ischemia in Alzheimer’s disease. Neurobiol Aging 21:321–330

    Article  PubMed  CAS  Google Scholar 

  3. Siesjö BK (1978) Brain energy metabolism. Wiley, Chichester, pp 1–607

    Google Scholar 

  4. Kalaria RN, Kenny RA, Ballard CG, Perry R, Ince P, Polvikoski T (2004) Towards defining the neuropathological substrates of vascular dementia. J Neurol Sci 226:75–80

    Article  PubMed  Google Scholar 

  5. Napoli C, Palinski W (2005) Neurodegenerative diseases: insights into pathogenic mechanisms from atherosclerosis. Neurobiol Aging 26:293–302

    Article  PubMed  CAS  Google Scholar 

  6. Hachinski V, Munoz D (2000) Vascular factors in cognitive impairment–where are we now? Ann NY Acad Sci 903:1–5

    Article  PubMed  CAS  Google Scholar 

  7. Esposito G, Giovacchini G, Liow JS, Bhattacharjee AK, Greenstein D, Schapiro M, Hallett M, Herscovitch P, Eckelman WC, Carson RE, Rapoport SI (2008) Imaging neuroinflammation in Alzheimer’s disease with radiolabeled arachidonic acid and PET. J Nucl Med 49:1414–1421

    Article  PubMed  CAS  Google Scholar 

  8. Roman GC (2005) Vascular dementia prevention: a risk factor analysis. Cerebrovasc Dis 20(Suppl 2):91–100

    PubMed  Google Scholar 

  9. Andin U, Gustafson L, Passant U, Brun A (2005) A clinico-pathological study of heart and brain lesions in vascular dementia. Dement Geriatr Cogn Disord 19:222–228

    Article  PubMed  Google Scholar 

  10. Scheel P, Puls I, Becker G, Schoning M (1999) Volume reduction in cerebral blood flow in patients with vascular dementia. Lancet 354:2137

    Article  PubMed  CAS  Google Scholar 

  11. Komatani A, Yamaguchi K, Sugai Y, Takanashi T, Kera M, Shinohara M, Kawakatsu S (1988) Assessment of demented patients by dynamic SPECT of inhaled xenon-133. J Nucl Med 29:1621–1626

    PubMed  CAS  Google Scholar 

  12. Niedermeyer E (2006) Alzheimer disease: caused by primary deficiency of the cerebral blood flow. Clin EEG Neurosci 37:175–177

    Article  PubMed  CAS  Google Scholar 

  13. Swan JH, Evans MC, Meldrum BS (1988) Long-term development of selective neuronal loss and the mechanism of protection by 2-amino-7-phosphonoheptanoate in a rat model of incomplete forebrain ischaemia. J Cereb Blood Flow Metab 8:64–78

    Article  PubMed  CAS  Google Scholar 

  14. Farkas E, Luiten PG, Bari F (2007) Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev 54:162–180

    Article  PubMed  CAS  Google Scholar 

  15. Kunimatsu T, Asai S, Kanematsu K, Kohno T, Misaki T, Ishikawa K (2001) Effects of glutamate receptor agonist on extracellular glutamate dynamics during moderate cerebral ischemia. Brain Res 923:178–186

    Article  PubMed  CAS  Google Scholar 

  16. Otori T, Katsumata T, Katayama Y, Terashi A (1997) Measurement of regional cerebral blood flow and glucose utilization in rat brain under chronic hypoperfusion conditions following bilateral carotid artery occlusion. Analyzed by autoradiographical methods. Nippon Ika Daigaku Zasshi 64:428–439

    PubMed  CAS  Google Scholar 

  17. Institoris A, Farkas E, Berczi S, Sule Z, Bari F (2007) Effects of cyclooxygenase (COX) inhibition on memory impairment and hippocampal damage in the early period of cerebral hypoperfusion in rats. Eur J Pharmacol 574:29–38

    Article  PubMed  CAS  Google Scholar 

  18. de la Torre JC, Cada A, Nelson N, Davis G, Sutherland RJ, Gonzalez-Lima F (1997) Reduced cytochrome oxidase and memory dysfunction after chronic brain ischemia in aged rats. Neurosci Lett 223:165–168

    Article  PubMed  Google Scholar 

  19. Ni JW, Matsumoto K, Li HB, Murakami Y, Watanabe H (1995) Neuronal damage and decrease of central acetylcholine level following permanent occlusion of bilateral common carotid arteries in rat. Brain Res 673:290–296

    Article  PubMed  CAS  Google Scholar 

  20. Nanri M, Miyake H, Murakami Y, Matsumoto K, Watanabe H (1998) Chronic cerebral hypoperfusion-induced neuropathological changes in rats. Nihon Shinkei Seishin Yakurigaku Zasshi 18:181–188

    PubMed  CAS  Google Scholar 

  21. Tanaka K, Wada-Tanaka N, Miyazaki I, Nomura M, Ogawa N (2002) Chronic cerebral hypoperfusion induces striatal alterations due to the transient increase of NO production and the depression of glutathione content. Neurochem Res 27:331–336

    Article  PubMed  CAS  Google Scholar 

  22. Otori T, Katsumata T, Muramatsu H, Kashiwagi F, Katayama Y, Terashi A (2003) Long-term measurement of cerebral blood flow and metabolism in a rat chronic hypoperfusion model. Clin Exp Pharmacol Physiol 30:266–272

    Article  PubMed  CAS  Google Scholar 

  23. Liu HX, Zhang JJ, Zheng P, Zhang Y (2005) Altered expression of MAP-2, GAP-43, and synaptophysin in the hippocampus of rats with chronic cerebral hypoperfusion correlates with cognitive impairment. Brain Res Mol Brain Res 139:169–177

    Article  PubMed  CAS  Google Scholar 

  24. Farkas B, Tantos A, Schlett K, Vilagi I, Friedrich P (2004) Ischemia-induced increase in long-term potentiation is warded off by specific calpain inhibitor PD150606. Brain Res 1024:150–158

    Article  PubMed  CAS  Google Scholar 

  25. Schmidt-Kastner R, Aguirre-Chen C, Saul I, Yick L, Hamasaki D, Busto R, Ginsberg MD (2005) Astrocytes react to oligemia in the forebrain induced by chronic bilateral common carotid artery occlusion in rats. Brain Res 1052:28–39

    Article  PubMed  CAS  Google Scholar 

  26. Liu D, Wu L, Breyer R, Mattson MP, Andreasson K (2005) Neuroprotection by the PGE2 EP2 receptor in permanent focal cerebral ischemia. Ann Neurol 57:758–761

    Article  PubMed  CAS  Google Scholar 

  27. Lu J, Tong XY, Wang XL (2002) Altered gene expression of Na+/Ca2+ exchanger isoforms NCX1, NCX2 and NCX3 in chronic ischemic rat brain. Neurosci Lett 332:21–24

    Article  PubMed  CAS  Google Scholar 

  28. Purdon AD, Rapoport SI (2007) Energy consumption by phospholipid metabolism in mammalian brain. In: Gibson G, Dienel G (eds) Neural energy utilization: handbook of neurochemistry and molecular biology, vol 16. Springer, New York, pp 401–427

    Google Scholar 

  29. Rabin O, Chang MC, Grange E, Bell J, Rapoport SI, Deutsch J, Purdon AD (1998) Selective acceleration of arachidonic acid reincorporation into brain membrane phospholipid following transient ischemia in awake gerbil. J Neurochem 70:325–334

    Article  PubMed  CAS  Google Scholar 

  30. Rabin O, Deutsch J, Grange E, Pettigrew KD, Chang MC, Rapoport SI, Purdon AD (1997) Changes in cerebral acyl-CoA concentrations following ischemia-reperfusion in awake gerbils. J Neurochem 68:2111–2118

    Article  PubMed  CAS  Google Scholar 

  31. Deutsch J, Rapoport SI, Purdon AD (1997) Relation between free fatty acid and acyl-CoA concentrations in rat brain following decapitation. Neurochem Res 22:759–765

    Article  PubMed  CAS  Google Scholar 

  32. Kuwashima J, Nakamura K, Fujitani B, Kadokawa T, Yoshida K, Shimizu M (1978) Relationship between cerebral energy failure and free fatty acid accumulation following prolonged brain ischemia. Jpn J Pharmacol 28:277–287

    Article  PubMed  CAS  Google Scholar 

  33. Murphy EJ (2010) Brain fixation for analysis of brain lipid-mediators of signal transduction and brain eicosanoids requires head-focused microwave irradiation: an historical perspective. Prostaglandins Other Lipid Mediat 91:63–67

    Article  PubMed  CAS  Google Scholar 

  34. Robinson PJ, Noronha J, DeGeorge JJ, Freed LM, Nariai T, Rapoport SI (1992) A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis. Brain Res Rev 17:187–214

    Article  PubMed  CAS  Google Scholar 

  35. Sun GY, MacQuarrie RA (1989) Deacylation-reacylation of arachidonoyl groups in cerebral phospholipids. Ann NY Acad Sci 559:37–55

    Article  PubMed  CAS  Google Scholar 

  36. Ong WY, Sandhya TL, Horrocks LA, Farooqui AA (1999) Distribution of cytoplasmic phospholipase A2 in the normal rat brain. J Hirnforsch 39:391–400

    PubMed  Google Scholar 

  37. Pardue S, Rapoport SI, Bosetti F (2003) Co-localization of cytosolic phospholipase A2 and cyclooxygenase-2 in Rhesus monkey cerebellum. Brain Res Mol Brain Res 116:106–114

    Article  PubMed  CAS  Google Scholar 

  38. Shimizu T, Wolfe LS (1990) Arachidonic acid cascade and signal transduction. J Neurochem 55:1–15

    Article  PubMed  CAS  Google Scholar 

  39. Bazán NG (1989) Arachidonic acid in the modulation of excitable membrane function and at the onset of brain damage. Ann NY Acad Sci 559:1–16

    Article  PubMed  Google Scholar 

  40. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  41. Skipski VP, Good JJ, Barclay M, Reggio RB (1968) Quantitative analysis of simple lipid classes by thin-layer chromatography. Biochim Biophys Acta 152:10–19

    PubMed  CAS  Google Scholar 

  42. Makrides M, Neumann MA, Byard RW, Simmer K, Gibson RA (1994) Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am J Clin Nutr 60:189–194

    PubMed  CAS  Google Scholar 

  43. Rapoport SI (2008) Arachidonic acid and the brain. J Nutr 138:2515–2520

    PubMed  CAS  Google Scholar 

  44. Rabin O, Drieu K, Grange E, Chang MC, Rapoport SI, Purdon AD (1998) Effects of EGb 761 on fatty acid reincorporation during reperfusion following ischemia in the brain of the awake gerbil. Mol Chem Neuropathol 34:79–101

    Article  PubMed  CAS  Google Scholar 

  45. Coleman RA, Lewin TM, Van Horn CG, Gonzalez-Baro MR (2002) Do long-chain acyl-CoA synthetases regulate fatty acid entry into synthetic versus degradative pathways? J Nutr 132:2123–2126

    PubMed  CAS  Google Scholar 

  46. Knudsen J, Neergaard TB, Gaigg B, Jensen MV, Hansen JK (2000) Role of acyl-CoA binding protein in acyl-CoA metabolism and acyl-CoA-mediated cell signaling. J Nutr 130:294S–298S

    PubMed  CAS  Google Scholar 

  47. Bazan NG, Rodriguez de Turco EB (1980) Membrane lipids in the pathogenesis of brain edema: phospholipids and arachidonic acid, the earliest membrane components changed at the onset of ischemia. Adv Neurol 28:197–205

    PubMed  CAS  Google Scholar 

  48. Kovalchuk Y, Miller B, Sarantis M, Attwell D (1994) Arachidonic acid depresses non-NMDA receptor currents. Brain Res 643:287–295

    Article  PubMed  CAS  Google Scholar 

  49. Surette ME, Krump E, Picard S, Borgeat P (1999) Activation of leukotriene synthesis in human neutrophils by exogenous arachidonic acid: inhibition by adenosine A(2a) receptor agonists and crucial role of autocrine activation by leukotriene B(4). Mol Pharmacol 56:1055–1062

    PubMed  CAS  Google Scholar 

  50. Li RC, Row BW, Gozal E, Kheirandish L, Fan Q, Brittian KR, Guo SZ, Sachleben LR Jr, Gozal D (2003) Cyclooxygenase 2 and intermittent hypoxia-induced spatial deficits in the rat. Am J Respir Crit Care Med 168:469–475

    Article  PubMed  Google Scholar 

  51. Farkas E, Donka G, de Vos RA, Mihaly A, Bari F, Luiten PG (2004) Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol (Berl) 108:57–64

    Article  Google Scholar 

  52. Rosenberger TA, Villacreses NE, Hovda JT, Bosetti F, Weerasinghe G, Wine RN, Harry GJ, Rapoport SI (2004) Rat brain arachidonic acid metabolism is increased by a 6-day intracerebral ventricular infusion of bacterial lipopolysaccharide. J Neurochem 88:1168–1178

    Article  PubMed  CAS  Google Scholar 

  53. Lee H, Villacreses NE, Rapoport SI, Rosenberger TA (2004) In vivo imaging detects a transient increase in brain arachidonic acid metabolism: a potential marker of neuroinflammation. J Neurochem 91:936–945

    Article  PubMed  CAS  Google Scholar 

  54. Marcheselli VL, Bazan NG (1996) Sustained induction of prostaglandin endoperoxide synthase-2 by seizures in hippocampus. Inhibition by a platelet-activating factor antagonist. J Biol Chem 271:24794–24799

    Article  PubMed  CAS  Google Scholar 

  55. Kaufmann WE, Andreasson KI, Isakson PC, Worley PF (1997) Cyclooxygenases and the central nervous system. Prostaglandins 54:601–624

    Article  PubMed  CAS  Google Scholar 

  56. Miettinen S, Fusco FR, Yrjanheikki J, Keinanen R, Hirvonen T, Roivainen R, Narhi M, Hokfelt T, Koistinaho J (1997) Spreading depression and focal brain ischemia induce cyclooxygenase-2 in cortical neurons through N-methyl-d-aspartic acid-receptors and phospholipase A2. Proc Natl Acad Sci USA 94:6500–6505

    Article  PubMed  CAS  Google Scholar 

  57. Farooqui AA, Horrocks LA (1991) Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res Brain Res Rev 16:171–191

    Article  PubMed  CAS  Google Scholar 

  58. Clark JD, Schievella AR, Nalefski EA, Lin LL (1995) Cytosolic phospholipase A2. J Lipid Mediat Cell Signal 12:83–117

    Article  PubMed  CAS  Google Scholar 

  59. Dennis EA (1994) Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem 269:13057–13060

    PubMed  CAS  Google Scholar 

  60. Bolanos JP, Almeida A (1999) Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta 1411:415–436

    Article  PubMed  CAS  Google Scholar 

  61. Rodrigo J, Fernandez AP, Serrano J, Peinado MA, Martinez A (2005) The role of free radicals in cerebral hypoxia and ischemia. Free Radic Biol Med 39:26–50

    Article  PubMed  CAS  Google Scholar 

  62. Irikura K, Morii S, Miyasaka Y, Yamada M, Tokiwa K, Yada K (1996) Impaired autoregulation in an experimental model of chronic cerebral hypoperfusion in rats. Stroke 27:1399–1404

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported entirely by the Intramural Research Program of the National Institute on Aging, and by the National Institute of Environmental Health Science, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley I. Rapoport.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharjee, A.K., White, L., Chang, L. et al. Bilateral Common Carotid Artery Ligation Transiently Changes Brain Lipid Metabolism in Rats. Neurochem Res 37, 1490–1498 (2012). https://doi.org/10.1007/s11064-012-0740-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0740-2

Keywords

Navigation