Skip to main content
Log in

Structural Characterization of Monosialo-, Disialo- and Trisialo-gangliosides by Negative Ion AP-MALDI-QIT-TOF Mass Spectrometry with MSn Switching

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) is a quite convenient soft ionization for biomolecules, keeping analytes atmospheric conditions instead of high vacuum conditions. In this study, an AP-MALDI ion source has been coupled to a quadrupole ion trap time-of-flight (QIT-TOF) mass spectrometer, which is able to perform MSn analysis. We applied this system to the structural characterization of monosialogangliosides, GM1 (NeuAc) and GM2 (NeuAc), disialogangliosides, GD2 (NeuAc, NeuAc), GD1a (NeuAc, NeuAc) and GD1b (NeuAc, NeuAc) and trisialoganglioside GT1a (NeuAc, NeuAc, NeuAc). In this system, the negative ion mass spectra of MS, MS2 and MS3, a set of three mass spectra, were able to measure within 2 s per cycle. Thus, obtained results demonstrate that the negative ion mode MS, MS2 and MS3 spectra provided sufficient information for the determination of molecular weights, oligosaccharide sequences and ceramide structures, and indicate that the AP-MALDI-QIT-TOF mass spectrometry keeping analytes atmospheric conditions with MSn switching is quite useful and convenient for structural analyses of various types of sialic acid-containing GSLs, gangliosides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AP:

Atmospheric pressure

MALDI:

Matrix-assisted laser desorption/ionization

QIT-TOF MS:

Quadrupole ion trap time-of-flight mass spectrometry

GSLs:

Glycosphingolipids

References

  1. Hakomori S, Igarashi Y (1995) Functional role of glycosphingolipids in cell recognition and signaling. J Biochem 118:1091–1103

    PubMed  CAS  Google Scholar 

  2. Karlsson KA (1998) On the character and functions of sphingolipids. Acta Biochim Pol 45:429–438

    PubMed  CAS  Google Scholar 

  3. Maccioni HJ, Quiroga R, Ferrari ML (2011) Cellular and molecular biology of glycosphingolipid glycosylation. J Neurochem 117:589–602

    PubMed  CAS  Google Scholar 

  4. Haughey NJ (2010) Sphingolipids in neurodegeneration. Neuromol Med 12:301–305

    Article  CAS  Google Scholar 

  5. Ledeen R, Wu G (2011) New findings on nuclear gangliosides: overview on metabolism and function. J Neurochem 116:714–720

    Article  PubMed  CAS  Google Scholar 

  6. Dreyfus H, Meuillet E, Guerold B, Fontaine V, Forster V, Heidinger V, Sahel J, Hicks D (1997) Ganglioside and neurotrophic growth factor interactions in retinal neuronal and glial cells. Ind J Biochem Biophys 34:90–96

    CAS  Google Scholar 

  7. Chiavegatto S, Sun J, Nelson RJ, Schnaar RL (2000) A functional role for complex gangliosides: motor deficits in GM2/GD2 synthase knockout mice. Exp Neurol 166:227–234

    Article  PubMed  CAS  Google Scholar 

  8. Rosner H (2003) Developmental expression and possible roles of gangliosides in brain development. Prog Mol Subcell Boil 32:49–73

    Article  CAS  Google Scholar 

  9. Skaper SD, Leon A, Toffano G (1989) Ganglioside function in the development and repair of the nervous system. From basic science to clinical application. Mol Neurobiol 3:173–199

    Article  PubMed  CAS  Google Scholar 

  10. Martin MJ, Martin-Sosa S, Alonso JM, Hueso P (2003) Enterotoxigenic Escherichia coli strains bind bovine milk gangliosides in a ceramide-dependent process. Lipid 38:761–768

    Article  CAS  Google Scholar 

  11. Ponnusamy S, Meyers-Needham M, Senkal CE, Saddoughi SA, Sentelle D, Selvam SP, Salas A, Ogretmen B (2010) Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncol 6:1603–1624

    Article  PubMed  CAS  Google Scholar 

  12. Gault CR, Obeid LM, Hannun YA (2010) An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol 688:1–23

    Article  PubMed  CAS  Google Scholar 

  13. Yang J, Yu Y, Sun S, Duerksen-Hughes PJ (2004) Ceramide and other sphingolipids in cellular responses. Cell Biochem Biophys 40:323–350

    Article  PubMed  CAS  Google Scholar 

  14. Ruvolo PP (2003) Intracellular signal transduction pathways activated by ceramide and its metabolites. Pharmacol Res 47:383–392

    Article  PubMed  CAS  Google Scholar 

  15. Levery SB (2005) Glycosphingolipid structural analysis and glycosphingolipidomics. Methods Enzymol 405:300–369

    Article  PubMed  CAS  Google Scholar 

  16. Tanaka K, Ojima N, Yamada M (2004) A new approach to post-translational modification analyses using MALDI-QIT-TOF MS. Tanpakushitsu Kakusan Koso 49:1907–1910

    PubMed  CAS  Google Scholar 

  17. Yamada K, Kinoshita M, Hayakawa T, Nakaya S, Kakehi K (2009) Comparative studies on the structural features of O-glycans between leukemia and epithelial cell lines. J Proteome Res 8:521–537

    Article  PubMed  CAS  Google Scholar 

  18. Laiko VV, Moyer SC, Cotter RJ (2000) Atmospheric pressure MALDI/ion trap mass spectrometry. Anal Chem 72:5239–5243

    Article  PubMed  CAS  Google Scholar 

  19. Moyer SC, Cotter RJ, Woods AS (2002) Fragmentation of phosphopeptides by atmospheric pressure MALDI and ESI/Ion trap mass spectrometry. J Am Soc Mass Spectrom 13:274–283

    Article  PubMed  CAS  Google Scholar 

  20. Tan PV, Laiko VV, Doroshenko VM (2004) Atmospheric pressure MALDI with pulsed dynamic focusing for high-efficiency transmission of ions into a mass spectrometer. Anal Chem 76:2462–2469

    Article  PubMed  CAS  Google Scholar 

  21. Schulz E, Karas M, Rosu F, Gabelica V (2006) Influence of the matrix on analyte fragmentation in atmospheric pressure MALDI. J Am Soc Mass Spectrom 17:1005–1013

    Article  PubMed  CAS  Google Scholar 

  22. Navare A, Nouzova M, Noriega FG, Hernández-Martínez S, Menzel C, Fernández FM (2009) On-chip solid-phase extraction pre-concentration/focusing substrates coupled to atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry for high sensitivity biomolecule analysis. Rapid Commun Mass Spectrom 23:477–486

    Article  PubMed  CAS  Google Scholar 

  23. Suzuki M, Yamakawa T, Suzuki A (1990) High-performance liquid chromatography-mass spectrometry of glycosphingolipids: II. Application to neutral glycolipids and monosialogangliosides. J Biochem 108:92–98

    PubMed  CAS  Google Scholar 

  24. Ann Q, Adams J (1992) Structure determination of ceramides and neutral glycosphingolipids by collisional activation of [M+Lil]+ ions. J Am Soc Mass Spectrom 3:260–263

    Article  CAS  Google Scholar 

  25. Ann Q, Adams J (1993) structure-specific collision-induced fragmentations of ceramides cationized with alkali-metal ions. Anal Chem 65:7–13

    Article  CAS  Google Scholar 

  26. Lee MH, Lee GH, Yoo JS (2003) Analysis of ceramides in cosmetics by reversed-phase liquid chromatography/electrospray ionization mass spectrometry with collision-induced dissociation. Rapid Commun Mass Spectrom 17:64–75

    Article  PubMed  CAS  Google Scholar 

  27. Zarei M, Bindila L, Souady J, Dreisewerd K, Berkenkamp S, Müthing J, Peter-Katalinić J (2008) A sialylation study of mouse brain gangliosides by MALDI a-TOF and o-TOF mass spectrometry. J Mass Spectrom 43:716–725

    Article  PubMed  CAS  Google Scholar 

  28. Sugiura Y, Shimma S, Konishi Y, Yamada MK, Setou M (2008) Imaging mass spectrometry technology and application on ganglioside study; visualization of age-dependent accumulation of C20-ganglioside molecular species in the mouse hippocampus. PLoS ONE 3:e3232

    Article  PubMed  Google Scholar 

  29. Laiko VV, Baldwin MA, Burlingame AL (2000) Atmospheric pressure MALDI/ion trap mass spectrometry. Anal Chem 72:652–657

    Article  PubMed  CAS  Google Scholar 

  30. Ikeda K, Taguchi R (2010) Highly sensitive localization analysis of gangliosides and sulfatides including structural isomers in mouse cerebellum sections by combination of laser microdissection and hydrophilic interaction liquid chromatography/electrospray ionization mass spectrometry with theoretically expanded multiple reaction monitoring. Rapid Commun Mass Spectrom 24:2957–2965

    Article  PubMed  CAS  Google Scholar 

  31. Ikeda K, Shimizu T, Taguchi R (2008) Targeted analysis of ganglioside and sulfatide molecular species by LC/ESI-MS/MS with theoretically expanded multiple reaction monitoring. J Lipid Res 49:2678–2689

    Article  PubMed  CAS  Google Scholar 

  32. Nakamura K, Suzuki Y, Goto-Inoue N, Yoshida-Noro C, Suzuki A (2006) Structural characterization of neutral glycosphingolipids by thin-layer chromatography coupled to matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight MS/MS. Anal Chem 78:5736–5748

    Article  PubMed  CAS  Google Scholar 

  33. Sugiyama E, Hara A, Uemura K, Taketomi T (1997) Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry with delayed ion extraction to ganglioside analyses. Glycobiology 7:719–724

    Article  PubMed  CAS  Google Scholar 

  34. Mechref Y, Novotny MV (1998) Matrix-assisted laser desorption/ionization mass spectrometry of acidic glycoconjugates facilitated by the use of spermine as a co-matrix. J Am Soc Mass Spectrom 9:1293–1302

    Article  PubMed  CAS  Google Scholar 

  35. Jackson SN, Wang HY, Woods AS (2005) Direct profiling of lipid distribution in brain tissue using MALDI-TOFMS. Anal Chem 77:4523–4527

    Article  PubMed  CAS  Google Scholar 

  36. Tajiri M, Takeuchi T, Wada Y (2009) Distinct features of matrix-assisted 6 micron infrared laser desorption/ionization mass spectrometry in biomolecular analysis. Anal Chem 81:6750–6755

    Article  PubMed  CAS  Google Scholar 

  37. Ivleva VB, Sapp LM, O’Connor PB, Costello CE (2005) Ganglioside analysis by thin-layer chromatography matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry. J Am Soc Mass Spectrom 16:1552–1560

    Article  PubMed  CAS  Google Scholar 

  38. Mahfoud R, Manis A, Binnington B, Ackerley C, Lingwood CA (2010) A major fraction of glycosphingolipids in model and cellular cholesterol-containing membranes is undetectable by their binding proteins. J Biol Chem 285:36049–36059

    Article  PubMed  CAS  Google Scholar 

  39. Togayachi A, Kozono Y, Ikehara Y, Ito H, Suzuki N, Tsunoda Y, Abe S, Sato T, Nakamura K, Suzuki M, Goda HM, Ito M, Kudo T, Takahashi S, Narimatsu H (2010) Lack of lacto/neolacto-glycolipids enhances the formation of glycolipid-enriched microdomains, facilitating B cell activation. Proc Natl Acad Sci USA 107:11900–11905

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant for Supporting Research Centers in Private Universities and by Grant-in-Aid for Scientific Research (A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akemi Suzuki.

Additional information

Special Issue: In honor of Bob Leedeen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, E., Tominaga, A., Waki, H. et al. Structural Characterization of Monosialo-, Disialo- and Trisialo-gangliosides by Negative Ion AP-MALDI-QIT-TOF Mass Spectrometry with MSn Switching. Neurochem Res 37, 1315–1324 (2012). https://doi.org/10.1007/s11064-012-0735-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0735-z

Keywords

Navigation