Skip to main content
Log in

Rapid and sensitive MALDI MS analysis of oligosaccharides by using 2-hydrazinopyrimidine as a derivative reagent and co-matrix

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Sensitive analysis of oligosaccharides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is significantly hampered by the low ionization efficiency of oligosaccharides. Derivatization affords a feasible way to enhance the MALDI intensities of oligosaccharides by introducing an easily ionized and/or hydrophobic tag to their reducing ends. However, tagging and subsequent desalting processes are quite time-consuming. Herein, we develop a rapid and sensitive approach for oligosaccharide derivatization by using 2-hydrazinopyrimidine (2-HPM). As a result of the presence of an electron-withdrawing N-heterocycle, 2-HPM can quantitatively derivatize oligosaccharides within 15 min and selectively facilitate their ionization. Additionally, 2-HPM acts as co-matrix to enhance the MALDI signal of oligosaccharides, and therefore the tedious enrichment and purification processes prior to MALDI analysis are avoided. This approach is applied to the analysis of various oligosaccharides released from glycopeptides, glycoprotein, and biological samples. After derivatization, a significant increase of MALDI intensities (greater than 10-fold) was observed for all the tested neutral and sialylated oligosaccharides. Moreover, the enhanced fragmentation of MS/MS brings much convenience to the structural elucidation of oligosaccharides.

Improved MALDI MS analysis of oligosaccharides by using 2-hydrazinopyrimidine as a derivative tag and co-matrix

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol. 2007;25:21–50.

    Article  CAS  Google Scholar 

  2. Jiang K, Gao Y, Hou W, et al. Proteomic analysis of O-GlcNAcylated proteins in invasive ductal breast carcinomas with and without lymph node metastasis. Amino Acids. 2016;48(2):365–74.

    Article  CAS  Google Scholar 

  3. Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 2012;13(7):448–62.

    Article  CAS  Google Scholar 

  4. Dalziel M, Crispin M, Scanlan CN, Zitzmann N, Dwek RA. Emerging principles for the therapeutic exploitation of glycosylation. Science. 2014;343(6166):1235681.

    Article  Google Scholar 

  5. Kaufmann R. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry: a novel analytical tool in molecular biology and biotechnology. J Biotechnol. 1995;41(2):155–75.

    Article  CAS  Google Scholar 

  6. Zhao Y, Kent SB, Chait BT. Rapid, sensitive structure analysis of oligosaccharides. Proc Natl Acad Sci. 1997;94(5):1629–33.

    Article  CAS  Google Scholar 

  7. Zaia J. Mass spectrometry of oligosaccharides. Mass Spectrom Rev. 2004;23(3):161–227.

    Article  CAS  Google Scholar 

  8. Mechref Y, Hu Y, Desantos-Garcia JL, Hussein A, Tang H. Quantitative glycomics strategies. Mol Cell Proteomics. 2013;12(4):874–84.

    Article  CAS  Google Scholar 

  9. Xia B, Kawar ZS, Ju T, Alvarez RA, Sachdev GP, Cummings RD. Versatile fluorescent derivatization of glycans for glycomic analysis. Nat Methods. 2005;2(11):845–50.

    Article  CAS  Google Scholar 

  10. Jiang K, Wang C, Sun Y, et al. Comparison of chicken and pheasant ovotransferrin N-glycoforms via electrospray ionization mass spectrometry and liquid chromatography coupled with mass spectrometry. J Agric Food Chem. 2014;62(29):7245–54.

    Article  CAS  Google Scholar 

  11. Pabst M, Kolarich D, Pöltl G, et al. Comparison of fluorescent labels for oligosaccharides and introduction of a new postlabeling purification method. Anal Biochem. 2009;384(2):263–73.

    Article  CAS  Google Scholar 

  12. Rohmer M, Meyer B, Mank M, Stahl B, Bahr U, Karas M. 3-Aminoquinoline acting as matrix and derivatizing agent for MALDI MS analysis of oligosaccharides. Anal Chem. 2010;82(9):3719–26.

    Article  CAS  Google Scholar 

  13. Lattova E, Perreault H. Profiling of N-linked oligosaccharides using phenylhydrazine derivatization and mass spectrometry. J Chromatogr A. 2003;1016(1):71–87.

    Article  CAS  Google Scholar 

  14. Snovida SI, Chen VC, Perreault H. Use of a 2,5-dihydroxybenzoic acid/aniline MALDI matrix for improved detection and on-target derivatization of glycans: a preliminary report. Anal Chem. 2006;78(24):8561–8.

    Article  CAS  Google Scholar 

  15. Cai Y, Zhang Y, Yang P, Lu H. Improved analysis of oligosaccharides for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using aminopyrazine as a derivatization reagent and a co-matrix. Analyst. 2013;138(21):6270–6.

    Article  CAS  Google Scholar 

  16. Jiao J, Zhang Y, Yang P, Lu H. Hydrazinonicotinic acid as a novel matrix for highly sensitive and selective MALDI-MS analysis of oligosaccharides. Analyst. 2015;140(1):156–61.

    Article  CAS  Google Scholar 

  17. Kaneshiro K, Fukuyama Y, Iwamoto S, Sekiya S, Tanaka K. Highly sensitive MALDI analyses of glycans by a new aminoquinoline-labeling method using 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid liquid matrix. Anal Chem. 2011;83(10):3663–7.

    Article  CAS  Google Scholar 

  18. Breslow R, McNelis E. Studies on model systems for thiamine action. Synthesis of reactive intermediates, and evidence on the function of the pyrimidine ring. J Am Chem Soc. 1959;81(12):3080–2.

    Article  CAS  Google Scholar 

  19. Wang H, Wang H, Zhang L, Zhang J, Guo Y. N-Alkylpyridinium isotope quaternization for matrix-assisted laser desorption/ionization Fourier transform mass spectrometric analysis of cholesterol and fatty alcohols in human hair. Anal Chim Acta. 2011;690(1):1–9.

    Article  CAS  Google Scholar 

  20. Zou Y, Wu Z, Chen L, et al. An efficient approach for large-scale production of sialyglycopeptides from egg yolks. J Carbohydr Chem. 2012;31(4-6):436–46.

    Article  CAS  Google Scholar 

  21. Ceroni A, Maass K, Geyer H, Geyer R, Dell A, Haslam SM. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res. 2008;7(4):1650–9.

    Article  CAS  Google Scholar 

  22. Wang C, Yuan J, Li X, Wang Z, Huang L. Sulfonyl hydrazine-functionalized polymer as a specific capturer of reducing glycans from complex samples for high-throughput analysis by electrospray ionization mass spectrometry. Analyst. 2013;138(18):5344–56.

    Article  CAS  Google Scholar 

  23. Yang SJ, Zhang H. Glycan analysis by reversible reaction to hydrazide beads and mass spectrometry. Anal Chem. 2012;84(5):2232–8.

    Article  CAS  Google Scholar 

  24. Walker SH, Budhathoki-Uprety J, Novak BM, Muddiman DC. Stable-isotope labeled hydrophobic hydrazide reagents for the relative quantification of N-linked glycans by electrospray ionization mass spectrometry. Anal Chem. 2011;83(17):6738–45.

    Article  CAS  Google Scholar 

  25. Bigge J, Patel T, Bruce J, Goulding P, Charles S, Parekh R. Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem. 1995;230(2):229–38.

    Article  CAS  Google Scholar 

  26. Reiding KR, Blank D, Kuijper DM, Deelder AM, Wuhrer M. High-throughput profiling of protein N-glycosylation by MALDI-TOF-MS employing linkage-specific sialic acid esterification. Anal Chem. 2014;86(12):5784–93.

    Article  CAS  Google Scholar 

  27. Stumpo KA, Reinhold VN. The N-glycome of human plasma. J Proteome Res. 2010;9(9):4823–30.

    Article  CAS  Google Scholar 

  28. Varki A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature. 2007;446(7139):1023–9.

    Article  CAS  Google Scholar 

  29. Song X, Yu H, Chen X, et al. A sialylated glycan microarray reveals novel interactions of modified sialic acids with proteins and viruses. J Biol Chem. 2011;286(36):31610–22.

    Article  CAS  Google Scholar 

  30. Sekiya S, Wada Y, Tanaka K. Derivatization for stabilizing sialic acids in MALDI-MS. Anal Chem. 2005;77(15):4962–8.

    Article  CAS  Google Scholar 

  31. Raman R, Raguram S, Venkataraman G, Paulson JC, Sasisekharan R. Glycomics: an integrated systems approach to structure-function relationships of glycans. Nat Methods. 2005;2(11):817–24.

    Article  CAS  Google Scholar 

  32. Tang H, Mechref Y, Novotny MV. Automated interpretation of MS/MS spectra of oligosaccharides. Bioinformatics. 2005;21 Suppl 1:i431–9.

    Article  CAS  Google Scholar 

  33. Amano J, Sugahara D, Osumi K, Tanaka K. Negative-ion MALDI-QIT-TOFMSn for structural determination of fucosylated and sialylated oligosaccharides labeled with a pyrene derivative. Glycobiology. 2009;19(6):592–600.

    Article  CAS  Google Scholar 

  34. Domon B, Costello CE. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J. 1988;5(4):397–409.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Georgia Research Alliance (GRA) and Georgia State University for purchasing the analytical instrument used in this research. This work was financially supported by the National Basic Research Program of China (973 Program, grant no. 2012CB910303), National Natural Science Foundation of China (31470795), Tianjin Municipal Science and Technology Commission (15JCYBJC24100) and China Scholarship Council (201506200006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianwen Zhang or Peng George Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Published in the topical collection Glycomics, Glycoproteomics and Allied Topics with guest editors Yehia Mechref and David Muddiman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 721 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, K., Aloor, A., Qu, J. et al. Rapid and sensitive MALDI MS analysis of oligosaccharides by using 2-hydrazinopyrimidine as a derivative reagent and co-matrix. Anal Bioanal Chem 409, 421–429 (2017). https://doi.org/10.1007/s00216-016-9690-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9690-x

Keywords

Navigation