Skip to main content
Log in

Effect of Chronic Administration of the Vinyl Chalcogenide 3-Methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one on Oxidative Stress in Different Brain Areas of Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Selenium (Se) is an essential mineral for mammals. It is a nutrient related to the complex metabolic and enzymatic functions. Although Se has important physiological functions in the cells, organic compounds of Se can be extremely toxic, and may affect the central nervous system. This study aims to investigate the effect of the chronic treatment with the vinyl chalcogenide 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one on some parameters of oxidative stress in the brain of rats. Animals received the vinyl chalcogenide (125, 250 or 500 μg/kg body weight) intraperitoneally once a day during 30 days. The cerebral cortex, the hippocampus, and the cerebellum were dissected and homogenized in KCl. Afterward, thiobarbituric acid reactive substances (TBARS), carbonyl, sulfhydryl, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were measured in the brain. Results showed that the organoselenium enhanced TBARS in the cerebral cortex of rats but the compound was not able to change carbonyl levels. Furthermore, the organoselenium reduced thiol groups measured by the sulfhydryl assay in all tissues studied. The activity of the antioxidant enzyme CAT was increased by the organochalcogen in the cerebral cortex and in the cerebellum, and the activity of SOD was increased in the hippocampus. On the other hand, the activity of the antioxidant enzyme GPx was reduced in all brain structures. Our findings indicate that this organoselenium compound induces oxidative stress in different brain regions of rats, corroborating to the fact that this tissue is a potential target for organochalcogen action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Santos DB, Schiara VPP, Ribeiro MCP, Schwaba RS, Meinerza DF, Allebrandta J, Rocha JBT, Nogueira CW, Aschnerb M, Barbosa NBV (2009) Genotoxicity of organoselenium compounds in human leukocytes in vitro. Mutat Res 676:21–26

    PubMed  CAS  Google Scholar 

  2. Braga AL, Zeni G, Andrade LH, Silveira CC (1997) Stereoconservative formation and reativity of α-chalcogen-functionalized vinylithium coumpounds from bromo-vinylic chalcogens. Synlett 5:595–596

    Article  Google Scholar 

  3. Paulmier C (1986) Selenium reagents and intermediates. Organic Synthesis, Pergamon

    Google Scholar 

  4. Arner ES (2009) Focus on mammalian thioredoxin reductases—important selenoproteins with versatile functions. Biochim Biophys Acta 1790(6):495–526

    Article  PubMed  CAS  Google Scholar 

  5. Vinceti M, Maraldi T, Bergomi M, Malagoli C (2009) Risk of chronic low-dose selenium overexposure in humans: insights from epidemiology and biochemistry. Rev Environ Health 24:231–248

    PubMed  CAS  Google Scholar 

  6. Chasteen TG, Bentley R (2003) Biomethylation of selenium and tellurium: microorganisms and plants. Chem Rev 103:1–25

    Article  PubMed  CAS  Google Scholar 

  7. Burger ME, Fachinetto R, Zeni G, Rocha JBT (2005) Ebselen attenuates haloperidol-induced orofacial dyskinesia and oxidative stress in rat brain. Pharma Biochem Beh 81:608–615

    Article  CAS  Google Scholar 

  8. Ghisleni G, Porciúncula LO, Cimarostia H, Rocha JBT, Salbego CG, Souza DO (2003) Diphenyl diselenide protects rat hippocampal slices submitted to oxygen–glucose deprivation and diminishes inducible nitric oxide synthase immunocontent. Brain Res 986:196–199

    Article  PubMed  CAS  Google Scholar 

  9. Müller A, Cadenas E, Graf P, Sies H (1984) A novel biologically active selenoorganic compound. I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ51 (ebselen). Biochem Pharmacol 33:3235–3239

    Article  PubMed  Google Scholar 

  10. Nogueira CW, Quinhones EB, Jung EAC, Zeni G, Rocha JBT (2003) Anti-inflammatory and antinociceptive activity of diphenyl diselenide. Inflamm 52:56–63

    Article  CAS  Google Scholar 

  11. Nogueira CW, Zeni G, Rocha JBT (2004) Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev 104:6255–6286

    Article  PubMed  CAS  Google Scholar 

  12. Halliwell B (2009) Free radicals and antioxidants: a personal view. Nutr Rev 52:253–265

    Article  Google Scholar 

  13. Lee SR, Suh SI, Kim SP (2000) Protective effects of the green tea polyphenol (2)-epigallocatechin gallate against hippocampal neuronal damage after transient global ischemia in gerbils. Neurosci Lett 287:191–194

    Article  PubMed  CAS  Google Scholar 

  14. Butterfield DA, Kanski J (2001) Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev 122:945–962

    Article  PubMed  CAS  Google Scholar 

  15. Stadtman ER (1990) Metal ion-catalyzed oxidation of proteins: Biochemical mechanism and biological consequences. Free Radic Biol Med 9:315–325

    Article  PubMed  CAS  Google Scholar 

  16. Gabbita SP, Lovell MA, Markesbery WR (1998) Increased nuclear DNA oxidation in the brain in Alzheimer’s disease. J Neurochem 71:2034–2040

    Article  PubMed  CAS  Google Scholar 

  17. Mecocci PL, MacGarvey U, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36:747–750

    Article  PubMed  CAS  Google Scholar 

  18. Smith MA, Perry G, Richey PL, Sayre LM, Anderson VE, Beal MF, Kowall N (1996) Oxidative damage in Alzheimer’s disease. Nature 382:120–121

    Article  PubMed  CAS  Google Scholar 

  19. Zeni G, Braga AL, Stefani HA (2003) Palladium-catalyzed coupling of sp2-hybrized tellurides. Accounts Chem Res 36:718–731

    Article  Google Scholar 

  20. Silveira CC, Braga AL, Guerra RB (2002) Stereoselective synthesis of alpha-phenylchalcogeno-alpha, beta-unsaturated esters. Tetrahedron Lett 43:3395–3397

    Article  CAS  Google Scholar 

  21. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  22. Reznick AZ, Packer L (1994) Carbonyl assay for determination of oxidatively modified proteins. Meth Enzymol 233:357–363

    Article  PubMed  CAS  Google Scholar 

  23. Aksenov MY, Markesbery WR (2001) Change in thiol content and expression of glutathione redox system gene in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145

    Article  PubMed  CAS  Google Scholar 

  24. Marklund S (1985) Handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 243–247

    Google Scholar 

  25. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  26. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  PubMed  CAS  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–267

    PubMed  CAS  Google Scholar 

  28. Zeni G, Ludtke D, Panatieri RB, Braga AL (2006) Vinylic tellurides: from preparation to their applicability in organic synthesis. Chem Rev 106:1032–1076

    Article  PubMed  CAS  Google Scholar 

  29. Bondy SC (1997) Free radical mediated toxic injury to the nervous system. In: Wallace KB (ed) Free radical toxicology. Taylor & Francis, Oxford, pp 221–248

    Google Scholar 

  30. Weber GF (1994) The pathophysiology of reactive oxygen intermediates in the central nervous system. Med Hypotheses 43(4):223–230

    Article  PubMed  CAS  Google Scholar 

  31. Baek BS, Kwon HJ, Lee KH, Yoo MA, Kim KW, Ikeno Y, Yu BP, Chung HY (1999) Regional difference of ROS generation, lipid peroxidation, and antioxidant enzyme activity in rat brain and their dietary modulation. Arch Pharm Res 22:361–366

    Article  PubMed  CAS  Google Scholar 

  32. Gemelli T, Carvalho CA, de Andrade RB, Guerra RB, Oliboni L, Salvador M, Dani C, Funchal C (2011) The organochalcogen 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one induces oxidative stress in heart, liver, and kidney of rats. Mol Cell Biochem. doi:10.1007/s11010-011-0850-1

  33. Funchal C, Carvalho CAS, Gemelli T, Centeno AS, Guerra RB, Salvador M, Dani C, Coitinho A, Gomez R (2010) Effects of acute Administration of 3-butyl-1-phenyl-2-(Phenyltelluro)oct-em-1-one on oxidative stress in cerebral córtex, hippocampus, and cerebellum of rats. Cell Mol Neurobiol 30:1135–1142

    Article  PubMed  CAS  Google Scholar 

  34. Hassan W, Pinton S, Rocha JT, Deobald AM, Braga AL, Nogueira CW, Latini AS, Rocha JB (2011) Hydroxyl containing seleno-imine compound exhibits improved anti-oxidant potential and does not inhibit thiol-containing enzymes. Chem Biol Interact 1:35–44

    Article  Google Scholar 

  35. Ineu RP, Pereira M, Aschner M, Nogueira C, Zeni G, Rocha J (2008) Diphenyl diselenide reverses gastric lesions in rats: involvement of oxidative stress. Food Chem Toxicol 46:3023–3029

    Article  PubMed  CAS  Google Scholar 

  36. Abdalla DSP, Lima ES (2001) Peroxidação Lipídica: mecanismos e avaliação em amostras biológicas. Rev Bras Cienc Farm 37(3):293–303

    Google Scholar 

  37. Tappel AL (1973) Lipid peroxidation damage to cell components. Fed Proc 32:1870–1874

    PubMed  CAS  Google Scholar 

  38. Penz J, Gemelli T, Carvalho CAS, Guerra RB, Olibone L, Salvador M, Dani D, Araujo AS, Funchal C (2009) Effect of 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one on oxidative stress in cerebral cortex of rats. Food Chem Toxicol 47:745–751

    Article  PubMed  CAS  Google Scholar 

  39. Carvalho CA, Gemelli T, Guerra RB, Oliboni L, Salvador M, Dani C, Araujo AS, Mascarenhas M, Funchal C (2009) Effect of in vitro exposure of human serum to 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one on oxidative stress. Mol Cell Biochem 332:127–134

    Article  PubMed  CAS  Google Scholar 

  40. Zugno AI, Stefanello FM, Scherer EBS, Mattos C, Pederzolli CD, Andrade VM, Wannmacher CMD, Wajner M, Dutra-Filho CS, Wyse ATS (2008) Guanidinoacetate decreases antioxidant defenses and total protein sulfhydryl content in striatum of rats. Neurochem Res 33:1804–1810

    Article  PubMed  CAS  Google Scholar 

  41. Nogueira CW, Borges VC, Zeni G, Rocha JB (2003) Organochalcogens effects on delta-aminolevulinate dehydratase activity from human erythrocytic cells in vitro. Toxicology 191:169–178

    Article  PubMed  CAS  Google Scholar 

  42. Bechara EJH, Medeiros MHG, Monteiro HP, Hermes-Lima M, Pereira B, Demasi M, Costa C, Adballa DSP, Onuki J, Wendel CMA, Masci PD (1993) A free radical hypothesis of lead poisoning and in born porphyrias associated with 5-aminolevulinic overload. Quimica Nova 16:385–392

    CAS  Google Scholar 

  43. Emanuelli T, Pagel FW, Alves LB, Regner A, Souza DO (2001) Inhibition of adenylate cyclase activity by 5-aminolevulinic acid in rat and human brain. Neurochem Int 38:213–218

    Article  PubMed  CAS  Google Scholar 

  44. Björnstedt M, Odlander B, Kuprin S, Claesson HE, Holmgrem A (1996) Selenite incubated with NADPH and mammalian thioredoxin reductase yields selenide, which inhibits lipoxygenase and changes the electron spin resonance spectrum of the active site iron. Biochemistry 35:8511–8516

    Article  PubMed  Google Scholar 

  45. Park HS, Park E, Kim MS, Ahn K, Kim IY, Choi EJ (2000) Selenite inhibits the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) through a thiol redox mechanism. J Biol Chem 275:2527–2531

    Article  PubMed  CAS  Google Scholar 

  46. Borges VC, Rocha JB, Nogueira CW (2005) Effect of diphenyl diselenide, diphenyl ditelluride and ebselen on cerebral Na(+), K(+)-ATPase activity in rats. Toxicology 215:191–197

    Article  PubMed  CAS  Google Scholar 

  47. Andrade RB, Gemelli T, Guerra RB, Funchal C, Wannmacherb CMD (2010) Inhibition of creatine kinase activity by 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one in the cerebral cortex and cerebellum of young rats. J Appl Toxicol 30:611–616

    Article  PubMed  Google Scholar 

  48. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  PubMed  CAS  Google Scholar 

  49. Remacle J, Michiels C, Raes M (1992) The importance of antioxidant enzymes in cellular aging and degeneration. EXS 62:99–108

    PubMed  CAS  Google Scholar 

  50. Halliwell B, Gutteridge JMC (2007) Measurement of reactive species. Oxford University Press, Oxford

    Google Scholar 

  51. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  52. Benzi G, Moretti A (1995) Age and peroxidative stress related modifications of the cerebral enzymatic activities linked to mitochondria and glutathione system. Free Radic Biol Med 19:77–101

    Article  PubMed  CAS  Google Scholar 

  53. Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31–38

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Centro Universitário Metodista do IPA and CNPq.

Conflict of interest

All authors declare that they have no conflicts of interest in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Funchal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medeiros, M.C., Mello, A., Gemelli, T. et al. Effect of Chronic Administration of the Vinyl Chalcogenide 3-Methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one on Oxidative Stress in Different Brain Areas of Rats. Neurochem Res 37, 928–934 (2012). https://doi.org/10.1007/s11064-011-0685-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0685-x

Keywords

Navigation