Skip to main content

Advertisement

Log in

Gallic acid abrogates cadmium-induced neurochemical changes and cognitive deficits in Wistar rat

  • Research
  • Published:
Nutrire Aims and scope Submit manuscript

Abstract

Purpose

The polyphenolic molecule gallic acid, which functions as an antioxidant by removing free radicals and chelating metals, has garnered a lot of attention. In animal studies, cadmium exposure has been linked to neurotoxic effects and cognitive impairment. In this context, the present study aimed at investigating the effect of gallic acid on the neurochemical change and cognitive impairment in rats exposed to cadmium.

Methods

Twenty-four Wistar rats were exposed to cadmium (5 mg/kg) for 21 days and thereafter treated with gallic acid (25 and 50 mg/kg). After the treatment period, the rats were subjected to neurobehavioral tests before being sacrificed under mild anesthesia. The brain was removed and dissected into the cortex and hippocampus, and the homogenates of these brain sections were prepared for biochemical analyses.

Results

Findings revealed a cognitive impairment due to cadmium exposure, and this was ameliorated by treatment with gallic acid. In addition to disruption of redox homeostasis, alteration in the enzyme activity of cholinergic and purinergic systems was observed in rats exposed to cadmium. However, treatment with gallic acid restored redox balance by enhancing the activity of some antioxidant enzymes and reducing the concentration of oxidative stress markers. Also, treatment with gallic acid modulated the enzyme activity of cholinergic and purinergic systems.

Conclusion

Thus, gallic acid treatment reversed cognitive impairment, and alteration to the cholinergic and purinergic systems caused by subchronic cadmium exposure in rats, possibly via an antioxidant mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data is available on request.

References

  1. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol. 2021;12:643972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nemmiche S, Chabane-Sari D, Guiraud P. Role of α-tocopherol in cadmium-induced oxidative stress in Wistar rat’s blood, liver and brain. Chem-Biol Interact. 2007;170(3):221–30.

    Article  CAS  PubMed  Google Scholar 

  3. Johri N, Jacquillet G, Unwin R. Heavy metal poisoning: the effects of cadmium on the kidney. Biometals. 2010;23(5):783–92.

    Article  CAS  PubMed  Google Scholar 

  4. Unsal V, Dalkıran T, Çiçek M, Kölükçü E. The role of natural antioxidants against reactive oxygen species produced by cadmium toxicity: a review. Adv Pharm Bull. 2020;10(2):184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Méndez-Armenta M, Rios C. Cadmium neurotoxicity. Environ Toxicol Pharmacol. 2007;23(3):350–8.

    Article  PubMed  Google Scholar 

  6. Branca JJ, Maresca M, Morucci G, Mello T, Becatti M, Pazzagli L, Colzi I, Gonnelli C, Carrino D, Paternostro F, Nicoletti C. Effects of cadmium on ZO-1 tight junction integrity of the blood brain barrier. Int J Mol Sci. 2019;20(23):6010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Al Omairi NE, Radwan OK, Alzahrani YA, Kassab RB. Neuroprotective efficiency of Mangifera indica leaves extract on cadmium-induced cortical damage in rats. Metab Brain Dis. 2018;33:1121–30.

    Article  CAS  PubMed  Google Scholar 

  8. Bakulski KM, Hu H, Park SK. Lead, cadmium and Alzheimer’s disease. Genet Neurol Behav Diet Dement. 2020;1:813–30.

    Article  Google Scholar 

  9. da Costa P, Gonçalves JF, Baldissarelli J, Mann TR, Abdalla FH, Fiorenza AM, da Rosa MM, Carvalho FB, Gutierres JM, de Andrade CM, Rubin MA. Curcumin attenuates memory deficits and the impairment of cholinergic and purinergic signaling in rats chronically exposed to cadmium. Environ Toxicol. 2017;32(1):70–83.

    Article  PubMed  Google Scholar 

  10. Oboh G, Adebayo AA, Ademosun AO, Olowokere OG. Rutin alleviates cadmium-induced neurotoxicity in Wistar rats: involvement of modulation of nucleotide-degrading enzymes and monoamine oxidase. Metab Brain Dis. 2019;34(4):1181–90.

    Article  CAS  PubMed  Google Scholar 

  11. Ferreira-Vieira HT, Guimaraes MI, Silva RF, Ribeiro MF. Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol. 2016;14(1):101–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Flora SJS, Pachauri V. Chelation in metal intoxication. Intl J Environ Res Public Health. 2010;7:2745–88.

    Article  CAS  Google Scholar 

  13. Szwajgier D, Borowiec K, Pustelniak K. The neuroprotective effects of phenolic acids: molecular mechanism of action. Nutrients. 2017;9(5):477.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Del Bo’ C, Bernardi S, Marino M, Porrini M, Tucci M, Guglielmetti S, Cherubini A, Carrieri B, Kirkup B, Kroon P, Zamora-Ros R. Systematic review on polyphenol intake and health outcomes: is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern?. Nutrients. 2019;11(6):1355.

  15. Liu J, He Z, Ma N, Chen ZY. Beneficial effects of dietary polyphenols on high-fat diet-induced obesity linking with modulation of gut microbiota. J Agric Food Chem. 2019;68(1):33–47.

    Article  PubMed  Google Scholar 

  16. Maurya DK, Nandakumar N, Devasagayam TP. Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms. J Clin Biochem Nutr. 2010;48(1):85–90.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Badhani B, Sharma N, Kakkar R. Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015;5(35):27540–57.

    Article  CAS  Google Scholar 

  18. Perazzoli MR, Perondi CK, Baratto CM, Winter E, Creczynski-Pasa TB, Locatelli C. Gallic acid and dodecyl gallate prevents carbon tetrachloride-induced acute and chronic hepatotoxicity by enhancing hepatic antioxidant status and increasing p53 expression. Biol Pharm Bull. 2017;40(4):425–34.

    Article  PubMed  Google Scholar 

  19. Lee CY, Su CH, Tsai PK, Yang ML, Ho YC, Lee SS, Chen CH, Chen WY, Lin ML, Chen CJ, Chian CY. Cadmium nitrate-induced neuronal apoptosis is protected by N-acetyl-l-cysteine via reducing reactive oxygen species generation and mitochondria dysfunction. Biomed Pharmacother. 2018;108:448–56.

    Article  CAS  PubMed  Google Scholar 

  20. Tsai CY, Fang C, Wu JC, Wu CJ, Dai KY, Chen SM. Neuroinflammation and microglial activation at rostral ventrolateral medulla underpin cadmium-induced cardiovascular dysregulation in rats. J Inflamm Res. 2021;14:3863.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Abdel-Aleem GA, Khaleel EF. Rutin hydrate ameliorates cadmium chloride-induced spatial memory loss and neural apoptosis in rats by enhancing levels of acetylcholine, inhibiting JNK and ERK1/2 activation and activating mTOR signalling. Arch Physiol Biochem. 2018;124(4):367–77.

    Article  CAS  PubMed  Google Scholar 

  22. Mohamed HM, Abd El-Twab SM. Gallic acid attenuates chromium-induced thyroid dysfunction by modulating antioxidant status and inflammatory cytokines. Environ Toxicol Pharmacol. 2016;48:225–36.

    Article  CAS  PubMed  Google Scholar 

  23. Adeniyi PA, Omatsuli EP, Akinyemi AJ, Ishola AO. Caffeine plus nicotine improves motor function, spatial and non-spatial working memory and functional indices in BALB/c male mice. Pathophysiology. 2016;23(4):251–8.

    Article  CAS  PubMed  Google Scholar 

  24. Ademosun AO, Adebayo AA, Popoola TV, Oboh G. Shaddock (Citrus maxima) peels extract restores cognitive function, cholinergic and purinergic enzyme systems in scopolamine-induced amnesic rats. Drug Chem Toxicol. 2022;45(3):1073–80.

    Article  CAS  PubMed  Google Scholar 

  25. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7(2):88–95.

    Article  CAS  PubMed  Google Scholar 

  26. Schetinger MR, Porto NM, Moretto MB, Morsch VM, da Rocha JB, Vieira V, Moro F, Neis RT, Bittencourt S, Bonacorso HG, Zanatta N. New benzodiazepines alter acetylcholinesterase and ATPDase activities. Neurochem Res. 2000;25(7):949–55.

    Article  CAS  PubMed  Google Scholar 

  27. Hayashi I, Morishita Y, Imai K, Nakamura M, Nakachi K, Hayashi T. High-throughput spectrophotometric assay of reactive oxygen species in serum. Mutat Res. 2007;631(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  28. Ohkawa H, Ohishi N, Yagi K. Assay of lipid peroxidation in animal tissue by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–358.

  29. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170–5.

    Article  CAS  PubMed  Google Scholar 

  30. Claiborne A. Catalase activity. In: Greenwald RA, editor. Handbook of methods for oxygen radical research. Boca Raton: CRC Press; 1985. p. 283–4.

    Google Scholar 

  31. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  32. Seok H, Lee M, Shin E, Yun MR, Lee YH, Moon JH, Kim E, Lee PH, Lee BW, Kang ES, Lee HC. Low-dose pioglitazone can ameliorate learning and memory impairment in a mouse model of dementia by increasing LRP1 expression in the hippocampus. Sci Rep. 2019;9(1):1–10.

    Article  Google Scholar 

  33. Niedzielska E, Smaga I, Gawlik M, Moniczewski A, Stankowicz P, Pera J, Filip M. Oxidative stress in neurodegenerative diseases. Mol Neurobiol. 2016;53(6):4094–125.

    Article  CAS  PubMed  Google Scholar 

  34. Rekatsina M, Paladini A, Piroli A, Zis P, Pergolizzi JV, Varrassi G. Pathophysiology and therapeutic perspectives of oxidative stress and neurodegenerative diseases: a narrative review. Adv Ther. 2020;37(1):113–39.

    Article  PubMed  Google Scholar 

  35. Negre-Salvayre A, Auge N, Ayala V, Basaga H, Boada J, Brenke R, Chapple S, Cohen G, Feher J, Grune T, Lengyel G. Pathological aspects of lipid peroxidation. Free Radic Res. 2010;44(10):1125–71.

    Article  CAS  PubMed  Google Scholar 

  36. Agostini JF, Dal Santo G, Baldin SL, Bernardo HT, de Farias AC, Rico EP, Wanderley AG. Gallic acid reverses neurochemical changes induced by prolonged ethanol exposure in the zebrafish brain. Neurosci. 2021;455:251–62.

    Article  CAS  Google Scholar 

  37. Salehi A, Rabiei Z, Setorki M. Effect of gallic acid on chronic restraint stress-induced anxiety and memory loss in male BALB/c mice. Iran J Basic Med Sci. 2018;21(12):1232.

    PubMed  PubMed Central  Google Scholar 

  38. Gao J, Hu J, Hu D, Yang X. A role of gallic acid in oxidative damage diseases: a comprehensive review. Nat Prod Commun. 2019;14(8):1934578X19874174.

  39. Samad N, Jabeen S, Imran I, Zulfiqar I, Bilal K. Protective effect of gallic acid against arsenic-induced anxiety-/depression-like behaviors and memory impairment in male rats. Metab Brain Dis. 2019;34:1091–102.

    Article  CAS  PubMed  Google Scholar 

  40. Rico EP, Rosemberg DB, Seibt KJ, Capiotti KM, Da Silva RS, Bonan CD. Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets. Neurotoxicol Teratol. 2011;33(6):608–17.

    Article  CAS  PubMed  Google Scholar 

  41. Peres TV, Schettinger MR, Chen P, Carvalho F, Avila DS, Bowman AB, Aschner M. Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies. BMC Pharmacol Toxicol. 2016;17(1):1–20.

    Article  Google Scholar 

  42. Akintunde JK, Irondi AE, Ajani EO, Olayemi TV. Neuroprotective effect of dietary black seed flour on key enzymes linked with neuronal signaling molecules in rats exposed to mixture of environmental metals. J Food Biochem. 2018;42(5):e12573.

    Article  Google Scholar 

  43. Mattson MP. Addendum: Pathways towards and away from Alzheimer’s disease. Nature. 2004;431(7004):107.

    Article  CAS  Google Scholar 

  44. Chtourou Y, Slima AB, Gdoura R, Fetoui H. Naringenin mitigates iron-induced anxiety-like behavioral impairment, mitochondrial dysfunctions, ectonucleotidases and acetylcholinesterase alteration activities in rat hippocampus. Neurochem Res. 2015;40(8):1563–75.

    Article  CAS  PubMed  Google Scholar 

  45. Damodaran T, Müller CP, Hassan Z. Chronic cerebral hypoperfusion-induced memory impairment and hippocampal long-term potentiation deficits are improved by cholinergic stimulation in rats. Pharmacol Rep. 2019;71(3):443–8.

    Article  CAS  PubMed  Google Scholar 

  46. Olasehinde TA, Olaniran AO. Neurotoxicity of anthracene and benz[a]anthracene involves oxidative stress-induced neuronal damage, cholinergic dysfunction and disruption of monoaminergic and purinergic enzymes. Toxicol Res. 2022;38(3):365–77.

    Article  CAS  PubMed  Google Scholar 

  47. Driver AS, Kodavanti PR, Mundy WR. Age-related changes in reactive oxygen species production in rat brain homogenates. Neurotoxicol Teratol. 2000;22(2):175–81.

    Article  CAS  PubMed  Google Scholar 

  48. Stepanova A, Konrad C, Manfredi G, Springett R, Ten V, Galkin A. The dependence of brain mitochondria reactive oxygen species production on oxygen level is linear, except when inhibited by antimycin A. J Neurochem. 2019;148(6):731–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H. Purinergic signalling in the nervous system: an overview. Trends Neurosci. 2009;32(1):19–29.

    Article  CAS  PubMed  Google Scholar 

  50. Bagatini MD, Dos Santos AA, Cardoso AM, Mânica A, Reschke CR, Carvalho FB. The impact of purinergic system enzymes on noncommunicable, neurological, and degenerative diseases. J Immunol Res. 2018;2018:4892473.

  51. Agostinho P, Madeira D, Dias L, Simões AP, Cunha RA, Canas PM. Purinergic signaling orchestrating neuron-glia communication. Pharmacol Res. 2020;162:105253.

    Article  CAS  PubMed  Google Scholar 

  52. Reichert KP, Castro MF, Assmann CE, Bottari NB, Miron VV, Cardoso A, Stefanello N, Morsch VM, Schetinger MR. Diabetes and hypertension: pivotal involvement of purinergic signaling. Biomed Pharmacother. 2021;137:111273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bodin P, Burnstock G. Purinergic signalling: ATP release. Neurochem Res. 2001;26(8):959–69.

    Article  CAS  PubMed  Google Scholar 

  54. Khakh BS, North RA. Neuromodulation by extracellular ATP and P2X receptors in the CNS. Neuron. 2012;76(1):51–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. da Rosa G, Alba DF, Silva AD, Miron VV, Morsch VM, Boiago MM, Stefani LM, Baldissera MM, Lopes MT, Mendes RE, da Silva AS. Impacts of Escherichia coli infection in young breeder chicks on the animal behavior and cerebral activity of purinergic and cholinergic enzymes involved in the regulation of molecules with neurotransmitter and neuromodulator function. Microb Pathog. 2020;138:103787.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Project design: AAA, AOA, and GO. Experimental: AAA and AOA. Data analysis: AAA. Writing—original draft: AAA and AOA. Writing—review and editing: AAA, AOA, and GO.

Corresponding author

Correspondence to Adeniyi A. Adebayo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Handling of experimental animals was in accordance with international guidelines, and the procedure was approved by Ethical Committee of the Centre for Research and Development, Federal University of Technology, Akure, Nigeria (Approval number: FUTA/ETH/21/10).

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adebayo, A.A., Ademosun, A.O. & Oboh, G. Gallic acid abrogates cadmium-induced neurochemical changes and cognitive deficits in Wistar rat. Nutrire 48, 30 (2023). https://doi.org/10.1186/s41110-023-00216-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s41110-023-00216-9

Keywords

Navigation