Skip to main content

Advertisement

Log in

Pathobiochemical Effect of Acylated Steryl-β-Glucoside on Aggregation and Cytotoxicity of α-Synuclein

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cycad seed consumption by the native islanders of Guam is frequently associated with high rates of amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS/PDC); furthermore, accompanying pathological examination often exhibits α-synuclein inclusions in the neurons of the affected brain. Acylated steryl-β-glucoside (ASG) contained in cycad seeds is considered as causative environmental risk factor. We aimed to investigate whether ASG influences aggregation and cell toxicity of α-synuclein. To understand whether ASG is a causative factor in the development of ALS/PDC, soybean-derived ASG was tested for its effect on in vitro aggregation of α-synuclein using Thioflavin-T. ASG was also tested to determine whether it modulates α-synuclein cytotoxicity in yeast cells. In addition, we determined whether an interaction between ASG and α-synuclein occurs in the plasma membrane or cytoplasm using three factors: GM1 ganglioside, small unilamellar vesicles, and ATP. In the present study, we found that ASG-mediated acceleration of α-synuclein aggregation is influenced by the presence of ATP, but not by the presence of GM1. ASG accelerated the α-synuclein aggregation in the cytoplasm. ASG also enhanced α-synuclein-induced cytotoxicity in yeast cells. This study demonstrated that ASG directly enhances aggregation and cytotoxicity of α-synuclein, which are often observed in patients with ALS/PDC. These results, using assays that replicate cytoplasmic conditions, are consistent with the molecular mechanism that cytotoxicity is caused by intracellular α-synuclein fibril formation in neuronal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kurland LT, Molgaard CA (1982) Guamanian ALS: hereditary or acquired? Adv Neurol 36:165–171

    PubMed  CAS  Google Scholar 

  2. Whiting MG (1964) Food Practices in Als Foci in Japan, the Marianas, and New Guinea. Fed Proc 23:1343–1345

    PubMed  CAS  Google Scholar 

  3. Kurland LT (1988) Amyotrophic lateral sclerosis and Parkinson’s disease complex on Guam linked to an environmental neurotoxin. Trends Neurosci 11:51–54

    Article  PubMed  CAS  Google Scholar 

  4. Whiting MG (1963) Toxicity of cycads. Econ Bot 17:271–302

    Article  CAS  Google Scholar 

  5. Cox PA, Sacks OW (2002) Cycad neurotoxins, consumption of flying foxes, and ALS-PDC disease in Guam. Neurology 58:956–959

    Article  PubMed  Google Scholar 

  6. Vega A, Bell EA (1967) α-Amino-β-methylaminopropionic acid. a new amino acid from seeds of Cycas circinalis. Phytochemistry 6:759–762

    CAS  Google Scholar 

  7. Marler T, Lee V, Shaw CA (2005) Cycad toxins and neurological diseases in Guam: defining theoretical experimental standards for correlating human disease with environmental toxins. Hortic Sci 40:1607–1611

    CAS  Google Scholar 

  8. Karamyan VT, Speth RC (2008) Animal models of BMAA neurotoxicity: a critical review. Life Sci 82:233–246

    Article  PubMed  CAS  Google Scholar 

  9. Cruz-Aguado R, Winkler D, Shaw CA (2006) Lack of behavioral and neuropathological effects of dietary beta-methylamino-l-alanine (BMAA) in mice. Pharmacol Biochem Behav 84:294–299

    Article  PubMed  CAS  Google Scholar 

  10. Yamazaki M, Arai Y, Baba M, Iwatsubo T, Mori O et al (2000) Alpha-synuclein inclusions in amygdala in the brains of patients with the parkinsonism-dementia complex of Guam. J Neuropathol Exp Neurol 59:585–591

    PubMed  CAS  Google Scholar 

  11. Auluck PK, Caraveo G, Lindquist S (2010) Alpha-synuclein: membrane interactions and toxicity in Parkinson’s disease. Annu Rev Cell Dev Biol 26:211–233

    Article  PubMed  CAS  Google Scholar 

  12. Ledeen RW, Yu RK (1982) Gangliosides: structure, isolation, and analysis. Methods Enzymol 83:139–191

    Article  PubMed  CAS  Google Scholar 

  13. Martinez Z, Zhu M, Han S, Fink AL (2007) GM1 specifically interacts with alpha-synuclein and inhibits fibrillation. Biochemistry 46:1868–1877

    Article  PubMed  CAS  Google Scholar 

  14. Lo Bianco C, Shorter J, Regulier E, Lashuel H, Iwatsubo T et al (2008) Hsp104 antagonizes alpha-synuclein aggregation and reduces dopaminergic degeneration in a rat model of Parkinson disease. J Clin Invest 118:3087–3097

    Article  PubMed  CAS  Google Scholar 

  15. Roberts JJ, Walker JB (1983) Synthesis and accumulation of an extremely stable high-energy phosphate compound by muscle, heart, and brain of animals fed the creatine analog, 1-carboxyethyl-2-iminoimidazolidine(homocyclocreatine). Arch Biochem Biophys 220:563–571

    Article  PubMed  CAS  Google Scholar 

  16. Khurana R, Coleman C, Ionescu-Zanetti C, Carter SA, Krishna V et al (2005) Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol 151:229–238

    Article  PubMed  CAS  Google Scholar 

  17. Tanji K, Mori F, Kakita A, Zhang H, Kito K et al (2007) Immunohistochemical localization of NUB1, a synphilin-1-binding protein, in neurodegenerative disorders. Acta Neuropathol 114:365–371

    Article  PubMed  CAS  Google Scholar 

  18. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R et al (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  PubMed  CAS  Google Scholar 

  19. Tu PH, Galvin JE, Baba M, Giasson B, Tomita T et al (1998) Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann Neurol 44:415–422

    Article  PubMed  CAS  Google Scholar 

  20. Tabata RC, Wilson JM, Ly P, Zwiegers P, Kwok D et al (2008) Chronic exposure to dietary sterol glucosides is neurotoxic to motor neurons and induces an ALS-PDC phenotype. Neuromol Med 10:24–39

    Article  CAS  Google Scholar 

  21. Usuki S, Ariga T, Dasgupta S, Kasama T, Morikawa K et al (2008) Structural analysis of novel bioactive acylated steryl glucosides in pre-germinated brown rice bran. J Lipid Res 49:2188–2196

    Article  PubMed  CAS  Google Scholar 

  22. Ivorra MD, D’Ocon MP, Paya M, Villar A (1988) Antihyperglycemic and insulin-releasing effects of beta sitosterol 3-beta-d-glucoside and its aglycone, beta-sitosterol. Arch Int Pharmacodyn Ther 296:224–231

    PubMed  CAS  Google Scholar 

  23. Villasenor IM, Angelada J, Canlas AP, Echegoyen D (2002) Bioactivity studies on beta-sitosterol and its glucoside. Phytother Res 16:417–421

    Article  PubMed  CAS  Google Scholar 

  24. Yoon NY, Min BS, Lee HK, Park JC, Choi JS (2005) A potent anti-complementary acylated sterol glucoside from Orostachys japonicus. Arch Pharm Res 28:892–896

    Article  PubMed  CAS  Google Scholar 

  25. Matsuda H, Tokunaga M, Iwahashi H, Naruto S, Yagi H et al (2005) Studies on palauan medicinal herbs. II. Activation of mouse macrophages RAW 264.7 by Ongael, leaves of Phaleria cumingii (Meisn.) F. Vill. and its acylglucosylsterols. Biol Pharm Bull 28:929–933

    Article  PubMed  CAS  Google Scholar 

  26. Wislet-Gendebien S, Visanji NP, Whitehead SN, Marsilio D, Hou W et al (2008) Differential regulation of wild-type and mutant alpha-synuclein binding to synaptic membranes by cytosolic factors. BMC Neurosci 9:92

    Article  PubMed  Google Scholar 

  27. Ledeen R, Wu G (2011) New findings on nuclear gangliosides: overview on metabolism and function. J Neurochem 116:714–720

    Article  PubMed  CAS  Google Scholar 

  28. Wu G, Lu ZH, Kulkarni N, Amin R, Ledeen RW (2011) Mice lacking major brain gangliosides develop Parkinsonism. Neurochem Res 36:1706–1714

    Article  PubMed  CAS  Google Scholar 

  29. Fortin DL, Troyer MD, Nakamura K, Kubo S, Anthony MD et al (2004) Lipid rafts mediate the synaptic localization of alpha-synuclein. J Neurosci 24:6715–6723

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a project grant from NIH project grants (NS 26,994 and NS 11,853) to Robert K. Yu. Thanks are due to Ms. Dawn O’Brien for her editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seigo Usuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usuki, S., Kamitani, T., Matsuo, Y. et al. Pathobiochemical Effect of Acylated Steryl-β-Glucoside on Aggregation and Cytotoxicity of α-Synuclein. Neurochem Res 37, 1261–1266 (2012). https://doi.org/10.1007/s11064-011-0662-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0662-4

Keywords

Navigation