Skip to main content
Log in

Postnatal Nitric Oxide Inhibition Modifies Neurotensin Effect on ATPase Activity

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We have previously showed that peptide neurotensin inhibits neuronal Na+, K+-ATPase activity, an effect which involves high affinity neurotensin receptor. Nitric oxide (NO) acts as a neurotransmitter or as a neuromodulator when it is synthesized by neuronal nitric oxide synthase. Neurotensin effect on Na+, K+-ATPase activity was evaluated in cortical synaptosomal membranes isolated from rats injected at 3, 4 and 5 postnatal days with saline (control) or N (ω)-nitro-l-arginine methyl esther (L-NAME), a nitric oxide synthase inhibitor. Assays were carried out at two stages: juvenile (35 days) and adult (56 days) ages. In an open field task, results recorded in juvenile rats markedly differed from those obtained in adult rats. The presence of neurotensin at 3.5 × 10−8–3.5 × 10−6 M concentration decreased 16–34% Na+, K+-ATPase activity in membranes purified from control animals. At variance, the peptide failed to alter this enzyme activity in membranes obtained after L-NAME treatment. After administration of L-NAME, [3H]-ouabain binding to membranes isolated from adult male rats decreased 64% in the presence of 1.0 × 10−6 M neurotensin, a peptide concentration which only slightly decreased binding to membranes isolated from juvenile rats. It is postulated that early postnatal NO dysfunction may exert a permanent change in neurotensin system that influence later Na+, K+-ATPase response to neurotensin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Carraway R, Leeman SE (1973) The isolation of a new hypotensive peptide neurotensin from bovine hypothalami. J Biol Chem 248:6854–6861

    PubMed  CAS  Google Scholar 

  2. Emson PC, Goedert M, Horsfield P et al (1982) The regional distribution and chromatographic characterisation of neurotensin-like immunoreactivity in the rat central nervous system. J Neurochem 38:992–999

    Article  PubMed  CAS  Google Scholar 

  3. Atoji Y, Watanabe H, Yamamoto Y et al (1995) Distribution of neurotensin-containing neurons in the central nervous system of the dog. J Com Neurol 353:67–88

    Article  CAS  Google Scholar 

  4. Nemeroff CB, Cain S (1985) Neurotensin-dopamine interactions in the CNS. Trends Pharmacol 6:201–205

    Article  CAS  Google Scholar 

  5. Kitabgi P, Nemeroff CB (1992) The neurobiology of neurotensin. Ann New York Acad Sci NY 668:1–374

    Article  Google Scholar 

  6. Vincent JP (1995) Neurotensin receptors: binding properties, transduction pathways and structure. Cell Mol Neurobiol 5:501–512

    Article  Google Scholar 

  7. Vincent JP, Mazella J, Kitabgi P (1999) Neurotensin and neurotensin receptor. Trends Pharmacol Sci 20:302–309

    Article  PubMed  CAS  Google Scholar 

  8. Gully D, Canton M, Boigegrain R et al (1993) Biochemical and pharmacological profile of a potent and selective non-peptide antagonist of neurotensin receptors. Proc Natl Acad Sci USA 90:65–69

    Article  PubMed  CAS  Google Scholar 

  9. Moncada S, Higgs A (1993) The l-arginine-nitric oxide pathway. N Engl J Med 329:2002–2012

    Article  PubMed  CAS  Google Scholar 

  10. Gally JA, Montague PR, Reeke GN Jr et al (1990) The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc Natl Acad Sci USA 87:3547–3551

    Article  PubMed  CAS  Google Scholar 

  11. Hess DT, Patterson SI, Smith DS et al (1993) Neuronal growth cone collapse and inhibition of protein fatty acylation by nitric oxide. Nature 366:562–565

    Article  PubMed  CAS  Google Scholar 

  12. Ogilvie P, Schilling K, Billingsley ML et al (1995) Induction and variants of neuronal nitric oxide synthase type I during synaptogenesis. FASEB J 9:799–806

    PubMed  CAS  Google Scholar 

  13. Wu HH, Waid DK, McLoon SC (1996) Nitric oxide and the developmental remodelling of retinal connections in the brain. Prog Brain Res 108:273–286

    Article  PubMed  CAS  Google Scholar 

  14. Black MD, Selk DE, Hitchcock JM et al (1999) On the effect of neonatal nitric oxide synthase inhibition in rats: a potential neurodevelopmental model of schizophrenia. Neuropharmacology 38:1299–1306

    Article  PubMed  CAS  Google Scholar 

  15. López Ordieres MG, Rodríguez de Lores Arnaiz G (2000) Neurotensin inhibits neuronal Na+, K+-ATPase activity through high affinity peptide receptor. Peptides 21:571–576

    Article  PubMed  Google Scholar 

  16. López Ordieres MG, Rodríguez de Lores Arnaiz G (2005) The inhibitory effect of neurotensin on synaptosomal membrane Na+, K+-ATPase is altered by antipsychotic administration. Regul Pept 129:177–182

    Article  PubMed  Google Scholar 

  17. Rodríguez de Lores Arnaiz G, Alberici M, De Robertis E (1967) Ultrastructural and enzymic studies of cholinergic and non-cholinergic synaptic membranes isolated from brain cortex. J Neurochem 14:215–225

    Article  Google Scholar 

  18. Albers RW, Rodríguez de Lores Arnaiz G, De Robertis E (1965) Sodium potassium-activated ATPase and potassium-activated p-nitrophenylphosphatase: a comparison of their subcellular localizations in rat brain. Proc Natl Acad Sci USA 53:557–564

    Article  PubMed  CAS  Google Scholar 

  19. Lowry OH, López JA (1946) Determination of inorganic phosphate in presence of labile P ester. J Biol Chem 162:421–428

    PubMed  CAS  Google Scholar 

  20. Antonelli M, Casillas T, Rodríguez de Lores Ar-naiz G (1991) Effect of Na+, K+-ATPase modifiers on high affinity ouabain binding determined by quantitative autoradiography. J Neurosci Res 28:324–331

    Article  PubMed  CAS  Google Scholar 

  21. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  22. Koob AO, Cirillo J, Babbs FB (2006) A novel open field activity detector to determine spatial and temporal movement of laboratory animals after injury and disease. J Neurosci Methods 157:330–336

    Article  PubMed  Google Scholar 

  23. Kopf S, Baratti CM (1996) Effects of Post-training administration of glucose on retention of a habituation response in mice: Participation of a central cholinergic mechanism. Neurobiol Learn Mem 65:253–260

    Article  PubMed  CAS  Google Scholar 

  24. Levant B, Zarcone TJ, Davis PF et al (2010) Differences in methylphenidate dose-response between peri-adolescent and adult rats in the familiar arena—novel alcove task. J Pharmacol Exp Ther 337:83–91

    Article  PubMed  Google Scholar 

  25. Featherstone RE, Kapur S, Fletcher PJ (2007) The amphetamine-induced sensitized state as a model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 31:1556–1571

    Article  PubMed  CAS  Google Scholar 

  26. Black MD, Simmonds J, Senyah Y et al (2002) Neonatal nitric oxide synthase inhibition: social interaction deficits in adulthood and reversal by antipsychotic drugs. Neuropharmacology 42:414–420

    Article  PubMed  CAS  Google Scholar 

  27. Matté C, Scherer EB, Stefanello FM et al (2007) Concurrent folate treatment prevents Na+, K+-ATPase activity inhibition and memory impairments caused by chronic hyperhomocysteinemia during rat development. Int J Devl Neurosci 25:545–552

    Article  Google Scholar 

  28. Zhan H, Tada T, Nakazato F et al (2004) Spatial learning transiently disturbed by intraventricular administration of ouabain. Neurol Res 26:35–40

    Article  PubMed  Google Scholar 

  29. Carageorgiou H, Pantos C, Zarros A et al (2007) Changes in acetylcholinesterase, Na+, K+-ATPase, and Mg2+-ATPase activities in the frontal cortex and the hippocampus of hyper- and hypothyroid adult rats. Metabolism 56:1104–1110

    Article  PubMed  CAS  Google Scholar 

  30. Fraser CL, Arieff AI (2001) Na-K-ATPase activity decreases with aging in female rat brain synaptosomes. Am J Physiol Renal Physiol 281:F674–F678

    PubMed  CAS  Google Scholar 

  31. Guzmán DC, Ruíz NL, García EH et al (2009) Effect of Sibutramine on Na+, K+-ATPase activity and tryptophane levels on male and female rat brain. Horm Metab Res 41:363–367

    Article  PubMed  Google Scholar 

  32. Najimi M, Robert JJ, Mallet J et al (2002) Neurotensin induces tyrosine hydroxylase gene activation through nitric oxide and protein kinase C signalling pathways. Mol Pharmacol 62:647–653

    Article  PubMed  CAS  Google Scholar 

  33. Kim HS, Yumkhman S, Choi JH et al (2006) Neurotensin enhances nitric oxide generation via the JAK2-STAT1 pathway in murine macrophage Raw264.7 cells during co-stimulation with LPS and IFN gamma. Neuropeptides 40:221–229

    Article  PubMed  CAS  Google Scholar 

  34. Croci T, Landi M, Gully D et al (1997) Negative modulation of nitric oxide production by neurotensin as a putative mechanism of the diuretic action of SR 48692 in rats. Br J Pharmacol 120:1312–1318

    Article  PubMed  CAS  Google Scholar 

  35. Groenendaal F, Mishra OP, McGowan JE et al (1997) Function of cell membranes in cerebral cortical tissue of newborn piglets after hypoxia and inhibition of nitric oxide synthase. Pediatr Res 42:174–179

    Article  PubMed  CAS  Google Scholar 

  36. Lingrel JB, Argüello JM, Van Huysse J et al (1997) Cation and Cardiac glycoside binding sites of the Na+, K+-ATPase. Ann New York Acad. Sci. NY 634:194–206

    Article  Google Scholar 

  37. Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669

    PubMed  CAS  Google Scholar 

  38. Bloom FE (1993) Advancing a neurodevelopmental origin for schizophrenia. Arch Gen Psychiatry 50:224–227

    PubMed  CAS  Google Scholar 

  39. Bogerts B (1993) Recent advances in the neuropathology of schizophrenia. Schizophr Bull 19:431–445

    PubMed  CAS  Google Scholar 

  40. Weinberger DR, Lipska BK (1995) Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: a search for common ground. Schizophr Res 16:87–110

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

G. R. de L. A. is Chief Investigator from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Financial support was provided by CONICET and Universidad de Buenos Aires, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Graciela López Ordieres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López Ordieres, M.G., Álvarez-Juliá, A., Kemmling, A. et al. Postnatal Nitric Oxide Inhibition Modifies Neurotensin Effect on ATPase Activity. Neurochem Res 36, 2278–2286 (2011). https://doi.org/10.1007/s11064-011-0552-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0552-9

Keywords

Navigation