Skip to main content

Advertisement

Log in

Endogenous Hydrogen Sulfide is Involved in Asymmetric Dimethylarginine-induced Protection Against Neurotoxicity of 1-Methyl-4-phenyl-pyridinium Ion

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase (NOS) inhibitor, is profoundly protective against 1-methy-4-phenylpyridinium ion (MPP+)-induced neurotoxicity. Reactive oxygen species (ROS) overproduction contributes to the neurotoxicity of MPP+; while hydrogen sulfide (H2S) is a pivotal endogenous antioxidant. This study is to assess the potential role of endogenous H2S in the neuroprotection of ADMA against MPP+-induced toxicity in PC12 cells. We showed that ADMA prevented MPP+-induced inhibition of endogenous H2S generation through inhibiting the down-regulation of cystathionine-β-synthetase (CBS, the major enzyme responsible for endogenous H2S generation in PC12 cells) expression and activity elicited by MPP+. ADMA obviously attenuated MPP+-triggered accumulation of intracellular ROS, dissipation of mitochondrial membrane potential (MMP), release of cytochrome c (Cyt-c), and downregulation of Bcl-2 protein expression in PC12 cells. Inhibition of CBS activity by amino-oxyacetate and CBS silencing with a short hairpin RNA vector targeting rat CBS gene reversed the protective action of ADMA against MPP+-caused cytotoxicity, ROS overproduction, and MMP loss in PC12 cells. These results indicate that the protection of ADMA against MPP+-mediated neurotoxicity involves the melioration of MPP+-induced inhibition of endogenous H2S generation. Our findings suggest that modulation of H2S production provide new therapeutic targets for the treatment of neurodegenerative disease, such as Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dawson TM, Dawson VL (2002) Neuroprotective and neurorestorative strategies for Parkinson’s disease. Nat Neurosci 5(Suppl):1058–1061

    Article  PubMed  CAS  Google Scholar 

  2. Vila M, Przedborski S (2003) Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 4:365–375

    Article  PubMed  CAS  Google Scholar 

  3. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  PubMed  CAS  Google Scholar 

  4. Przedborski S, Tieu K, Perier C, Vila M (2004) MPTP as a mitochondrial neurotoxic model of Parkinson’s disease. J Bioenerg Biomembr 36:375–379

    Article  PubMed  CAS  Google Scholar 

  5. Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB et al (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1269

    Article  PubMed  CAS  Google Scholar 

  6. Vallance P, Leone A, Calver A, Collier J, Moncada S (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339:572–575

    Article  PubMed  CAS  Google Scholar 

  7. Tang XQ, Li YJ, Zhao J, Shen XT, Yang CT et al (2010) Neuroprotective effect of asymmetric dimethylarginine against 1-methyl-4-phenylpyridinium ion-induced damage in PC12 cells. Clin Exp Pharmacol Physiol 37:530–535

    Article  PubMed  CAS  Google Scholar 

  8. Kimura H (2002) Hydrogen sulfide as a neuromodulator. Mol Neurobiol 26:13–19

    Article  PubMed  CAS  Google Scholar 

  9. Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798

    Article  PubMed  CAS  Google Scholar 

  10. Lowicka E, Beltowski J (2007) Hydrogen sulfide (H2S)—the third gas of interest for pharmacologists. Pharmacol Rep 59:4–24

    PubMed  CAS  Google Scholar 

  11. Szabo C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6:917–935

    Article  PubMed  CAS  Google Scholar 

  12. Zhang LM, Jiang CX, Liu DW (2009) Hydrogen sulfide attenuates neuronal injury induced by vascular dementia via inhibiting apoptosis in rats. Neurochem Res 34:1984–1992

    Article  PubMed  CAS  Google Scholar 

  13. Tan BH, Wong PT, Bian JS (2010) Hydrogen sulfide: a novel signaling molecule in the central nervous system. Neurochem Int 56:3–10

    Article  PubMed  CAS  Google Scholar 

  14. Qu K, Lee SW, Bian JS, Low CM, Wong PT (2008) Hydrogen sulfide: neurochemistry and neurobiology. Neurochem Int 52:155–165

    Article  PubMed  CAS  Google Scholar 

  15. Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. Faseb J 18:1165–1167

    PubMed  CAS  Google Scholar 

  16. Whiteman M, Armstrong JS, Chu SH, Jia-Ling S, Wong BS et al (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J Neurochem 90:765–768

    Article  PubMed  CAS  Google Scholar 

  17. Whiteman M, Cheung NS, Zhu YZ, Chu SH, Siau JL et al (2005) Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem Biophys Res Commun 326:794–798

    Article  PubMed  CAS  Google Scholar 

  18. Tang XQ, Yang CT, Chen J, Yin WL, Tian SW et al (2008) Effect of hydrogen sulphide on beta-amyloid-induced damage in PC12 cells. Clin Exp Pharmacol Physiol 35:180–186

    PubMed  CAS  Google Scholar 

  19. Tang XQ, Fan LL, Li YJ, Shen XT, Zhuan YY et al (2011) Inhibition of hydrogen sulfide generation contributes to 1-methy-4-phenylpyridinium ion-induced neurotoxicity. Neurotox Res 19:403–411

    Article  PubMed  CAS  Google Scholar 

  20. Yin WL, He JQ, Hu B, Jiang ZS, Tang XQ (2009) Hydrogen sulfide inhibits MPP(+)-induced apoptosis in PC12 cells. Life Sci 85:269–275

    Article  PubMed  CAS  Google Scholar 

  21. Li R, Kong Y, Ladisch S (1998) Nerve growth factor-induced neurite formation in PC12 cells is independent of endogenous cellular gangliosides. Glycobiology 8:597–603

    Article  PubMed  CAS  Google Scholar 

  22. Wang S, Hu CP, Jiang DJ, Peng J, Zhou Z et al (2009) All-trans retinoic acid inhibits cobalt chloride-induced apoptosis in PC12 cells: role of the dimethylarginine dimethylaminohydrolase/asymmetric dimethylarginine pathway. J Neurosci Res 87:1938–1946

    Article  PubMed  CAS  Google Scholar 

  23. Duan WG, Shang J, Jiang ZZ, Yao JC, Yun Y et al (2009) Rho kinase inhibitor Y-27632 down-regulates norepinephrine synthesis and release in PC12 cells. Basic Clin Pharmacol Toxicol 104:434–440

    Article  PubMed  CAS  Google Scholar 

  24. Cathcart R, Schwiers E, Ames BN (1983) Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem 134:111–116

    Article  PubMed  CAS  Google Scholar 

  25. Grieve A, Butcher SP, Griffiths R (1992) Synaptosomal plasma membrane transport of excitatory sulphur amino acid transmitter candidates: kinetic characterisation and analysis of carrier specificity. J Neurosci Res 32:60–68

    Article  PubMed  CAS  Google Scholar 

  26. Johnson LV, Walsh ML, Bockus BJ, Chen LB (1981) Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol 88:526–535

    Article  PubMed  CAS  Google Scholar 

  27. Blum D, Torch S, Lambeng N, Nissou M, Benabid AL et al (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65:135–172

    Article  PubMed  CAS  Google Scholar 

  28. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  PubMed  CAS  Google Scholar 

  29. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM et al (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  PubMed  CAS  Google Scholar 

  30. Kowaltowski AJ, Vercesi AE, Fiskum G (2000) Bcl-2 prevents mitochondrial permeability transition and cytochrome c release via maintenance of reduced pyridine nucleotides. Cell Death Differ 7:903–910

    Article  PubMed  CAS  Google Scholar 

  31. Drechsel DA, Patel M (2008) Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson’s disease. Free Radic Biol Med 44:1873–1886

    Article  PubMed  CAS  Google Scholar 

  32. Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207–219

    Article  PubMed  CAS  Google Scholar 

  33. Orrenius S (2007) Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev 39:443–455

    Article  PubMed  CAS  Google Scholar 

  34. Hildeman DA, Mitchell T, Aronow B, Wojciechowski S, Kappler J et al (2003) Control of Bcl-2 expression by reactive oxygen species. Proc Natl Acad Sci U S A 100:15035–15040

    Article  PubMed  CAS  Google Scholar 

  35. Moungjaroen J, Nimmannit U, Callery PS, Wang L, Azad N et al (2006) Reactive oxygen species mediate caspase activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 down-regulation. J Pharmacol Exp Ther 319:1062–1069

    Article  PubMed  CAS  Google Scholar 

  36. Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80:315–360

    PubMed  CAS  Google Scholar 

  37. Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122:437–441

    Article  PubMed  CAS  Google Scholar 

  38. Nakao A, Sugimoto R, Billiar TR, McCurry KR (2009) Therapeutic antioxidant medical gas. J Clin Biochem Nutr 44:1–13

    Article  PubMed  CAS  Google Scholar 

  39. Chang L, Geng B, Yu F, Zhao J, Jiang H et al (2008) Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids 34:573–585

    Article  PubMed  CAS  Google Scholar 

  40. Yan SK, Chang T, Wang H, Wu L, Wang R et al (2006) Effects of hydrogen sulfide on homocysteine-induced oxidative stress in vascular smooth muscle cells. Biochem Biophys Res Commun 351:485–491

    Article  PubMed  CAS  Google Scholar 

  41. Tang XQ, Shen XT, Huang YE, Ren YK, Chen RQ et al (2010) Hydrogen sulfide antagonizes homocysteine-induced neurotoxicity in PC12 cells. Neurosci Res 68:241–249

    Article  PubMed  CAS  Google Scholar 

  42. Whiteman M, Winyard PG (2011) Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Expert Rev Clin Pharmacol 4:13–32

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Natural Science Foundation of China (81071005, 30770740), Natural Science Foundation of Hunan Province, China (06JJ2074).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Qing Tang or Chun-Yan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, XQ., Fang, HR., Li, YJ. et al. Endogenous Hydrogen Sulfide is Involved in Asymmetric Dimethylarginine-induced Protection Against Neurotoxicity of 1-Methyl-4-phenyl-pyridinium Ion. Neurochem Res 36, 2176–2185 (2011). https://doi.org/10.1007/s11064-011-0542-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0542-y

Keywords

Navigation