Skip to main content

Advertisement

Log in

Sphingosylphosphorylcholine Attenuated β–Amyloid Production by Reducing BACE1 Expression and Catalysis in PC12 Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Abnormal accumulation of β-amyloid (Aβ) is the main characteristic of Alzheimer’s disease (AD) brain and Aβ peptides are generated from proteolytic cleavages of amyloid precursor protein (APP) by β-site APP-converting enzyme 1 (BACE1) and presenilin 1 (PS1). Sphingosylphosphorylcholine (SPC), a choline-containing sphingolipid, showed suppressive effect on Aβ production in PC12 cells which stably express Swedish mutant of amyloid precursor protein (APPsw). SPC (>3 μM) significantly lowered the accumulation of Aβ40/42 and the expression of BACE1. However, the transcriptions of other APP processing enzymes like ADAM10 and PS1 were not affected by the SPC addition. Meanwhile, phosphocholine (PC) or other lysophospholipids, such as lysophosphatidylcholine (LPC), lysophosphatidic acid (LPA), sphingosyl-1-phosphate (S1P), did not alter BACE1 expression. Down-regulatory effect of SPC on BACE1 expression appeared to be mediated by NF-κB which is known to suppress the trans-activation of BACE1 promoter in PC12 cells. Here, the nuclear tanslocation of NF-κB was enhanced by SPC treatment in immune-fluorescent image analysis and NF-κB reporter assay. Furthermore, the catalytic activities of BACE1 and BACE2 were dose-dependently inhibited by SPC displaying IC50 values of 2.79 μM and 12.05 μM, respectively. Overall, these data suggest that SPC has the potential to ameliorate Aβ pathology in neurons by down-regulating the BACE1-mediated amyloidogenic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Haass C, Schlossmacher MG, Hung AY et al (1992) Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359:322–325

    Article  PubMed  CAS  Google Scholar 

  2. LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8:499–509

    Article  PubMed  CAS  Google Scholar 

  3. De Jonghe C, Esselens C, Kumar-Singh S et al (2001) Pathogenic APP mutations near the gamma-secretase cleavage site differentially affect Abeta secretion and APP C-terminal fragment stability. Hum Mol Genet 10:1665–1671

    Article  PubMed  Google Scholar 

  4. Herreman A, Serneels L, Annaert W et al (2000) Total inactivation of gamma-secretase activity in presenilin-deficient embryonic stem cells. Nat Cell Biol 2:461–462

    Article  PubMed  CAS  Google Scholar 

  5. Selkoe DJ (1998) The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol 8:447–453

    Article  PubMed  CAS  Google Scholar 

  6. Vassar R, Bennett BD, Babu-Khan S et al (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    Article  PubMed  CAS  Google Scholar 

  7. Smith CM, Swash M, Exton-Smith AN et al (1978) Choline therapy in Alzheimer’s disease. Lancet 2:318

    Article  PubMed  CAS  Google Scholar 

  8. Schlossmacher MG, Ostaszewski BL, Hecker LI et al (1992) Detection of distinct isoform patterns of the beta-amyloid precursor protein in human platelets and lymphocytes. Neurobiol Aging 13:421–434

    Article  PubMed  CAS  Google Scholar 

  9. Bennett BD, Babu-Khan S, Loeloff R et al (2000) Expression analysis of BACE2 in brain and peripheral tissues. J Biol Chem 275:20647–20651

    Article  PubMed  CAS  Google Scholar 

  10. Farzan M, Schnitzler CE, Vasilieva N et al (2000) BACE2, a beta -secretase homolog, cleaves at the beta site and within the amyloid-beta region of the amyloid-beta precursor protein. Proc Natl Acad Sci USA 97:9712–9717

    Article  PubMed  CAS  Google Scholar 

  11. Lange-Dohna C, Zeitschel U, Gaunitz F et al (2003) Cloning and expression of the rat BACE1 promoter. J Neurosci Res 73:73–80

    Article  PubMed  CAS  Google Scholar 

  12. Bourne KZ, Ferrari DC, Lange-Dohna C et al (2007) Differential regulation of BACE1 promoter activity by nuclear factor-kappaB in neurons and glia upon exposure to beta-amyloid peptides. J Neurosci Res 85:1194–1204

    Article  PubMed  CAS  Google Scholar 

  13. He X, Huang Y, Li B et al (2010) Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol Aging 31:398–408

    Article  PubMed  CAS  Google Scholar 

  14. Jana A, Pahan K (2004) Fibrillar amyloid-beta peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase. Implications for Alzheimer’s disease. J Biol Chem 279:51451–51459

    Article  PubMed  CAS  Google Scholar 

  15. Qi XL, Xiu J, Shan KR et al (2005) Oxidative stress induced by beta-amyloid peptide(1–42) is involved in the altered composition of cellular membrane lipids and the decreased expression of nicotinic receptors in human SH-SY5Y neuroblastoma cells. Neurochem Int 46:613–621

    Article  PubMed  CAS  Google Scholar 

  16. Duong CQ, Bared SM, Abu-Khader A et al (2004) Expression of the lysophospholipid receptor family and investigation of lysophospholipid-mediated responses in human macrophages. Biochim Biophys Acta 1682:112–119

    PubMed  CAS  Google Scholar 

  17. Meyer zu Heringdorf D, Himmel HM, Jakobs KH (2002) Sphingosylphosphorylcholine-biological functions and mechanisms of action. Biochim Biophys Acta 1582:178–189

    PubMed  CAS  Google Scholar 

  18. Nixon GF, Mathieson FA, Hunter I (2008) The multi-functional role of sphingosylphosphorylcholine. Prog Lipid Res 47:62–75

    Article  PubMed  CAS  Google Scholar 

  19. Imokawa G (2009) A possible mechanism underlying the ceramide deficiency in atopic dermatitis: expression of a deacylase enzyme that cleaves the N-acyl linkage of sphingomyelin and glucosylceramide. J Dermatol Sci 55:1–9

    Article  PubMed  CAS  Google Scholar 

  20. Kim HJ, Kim H, Han ES et al (2008) Characterizations of sphingosylphosphorylcholine-induced scratching responses in ICR mice using naltrexon, capsaicin, ketotifen and Y-27632. Eur J Pharmacol 583:92–96

    Article  PubMed  CAS  Google Scholar 

  21. Boguslawski G, Lyons D, Harvey KA et al (2000) Sphingosylphosphorylcholine induces endothelial cell migration and morphogenesis. Biochem Biophys Res Commun 272:603–609

    Article  PubMed  CAS  Google Scholar 

  22. Boguslawski G, Grogg JR, Welch Z et al (2002) Migration of vascular smooth muscle cells induced by sphingosine 1-phosphate and related lipids: potential role in the angiogenic response. Exp Cell Res 274:264–274

    Article  PubMed  CAS  Google Scholar 

  23. Jeon ES, Kang YJ, Song HY et al (2005) Sphingosylphosphorylcholine generates reactive oxygen species through calcium-, protein kinase Cdelta- and phospholipase D-dependent pathways. Cell Signal 17:777–787

    Article  PubMed  CAS  Google Scholar 

  24. Tolle M, Pawlak A, Schuchardt M et al (2008) HDL-associated lysosphingolipids inhibit NAD(P)H oxidase-dependent monocyte chemoattractant protein-1 production. Arterioscler Thromb Vasc Biol 28:1542–1548

    Article  PubMed  Google Scholar 

  25. Xin C, Ren S, Eberhardt W et al (2007) Sphingosylphosphorylcholine acts in an anti-inflammatory manner in renal mesangial cells by reducing interleukin-1beta-induced prostaglandin E2 formation. J Lipid Res 48:1985–1996

    Article  PubMed  CAS  Google Scholar 

  26. Murch O, Abdelrahman M, Collino M et al (2008) Sphingosylphosphorylcholine reduces the organ injury/dysfunction and inflammation caused by endotoxemia in the rat. Crit Care Med 36:550–559

    Article  PubMed  CAS  Google Scholar 

  27. Konno N, Nakamura A, Ikeno Y et al (2007) Novel neurotrophic effects of sphingosylphosphorylcholine in cerebellar granule neurons and in PC12 cells. Biochem Biophys Res Commun 364:163–168

    Article  PubMed  CAS  Google Scholar 

  28. Ghosh AK, Kumaragurubaran N, Hong L et al (2007) Design, synthesis, and X-ray structure of potent memapsin 2 (beta-secretase) inhibitors with isophthalamide derivatives as the P2–P3-ligands. J Med Chem 50:2399–2407

    Article  PubMed  CAS  Google Scholar 

  29. Lin R, Chen X, Li W et al (2008) Exposure to metal ions regulates mRNA levels of APP and BACE1 in PC12 cells: blockage by curcumin. Neurosci Lett 440:344–347

    Article  PubMed  CAS  Google Scholar 

  30. Zhu X, Zhou W, Cui Y et al (2009) Muscarinic activation attenuates abnormal processing of beta-amyloid precursor protein induced by cobalt chloride-mimetic hypoxia in retinal ganglion cells. Biochem Biophys Res Commun 384:110–113

    Article  PubMed  CAS  Google Scholar 

  31. Hillion JA, Takahashi K, Maric D et al (2005) Development of an ischemic tolerance model in a PC12 cell line. J Cereb Blood Flow Metab 25:154–162

    Article  PubMed  CAS  Google Scholar 

  32. Reimann-Philipp U, Ovase R, Weigel PH et al (2001) Mechanisms of cell death in primary cortical neurons and PC12 cells. J Neurosci Res 64:654–660

    Article  PubMed  CAS  Google Scholar 

  33. Auld DS, Kornecook TJ, Bastianetto S et al (2002) Alzheimer’s disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 68:209–245

    Article  PubMed  CAS  Google Scholar 

  34. Asai M, Hattori C, Szabo B et al (2003) Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase. Biochem Biophys Res Commun 301:231–235

    Article  PubMed  CAS  Google Scholar 

  35. Fahrenholz F, Gilbert S, Kojro E et al (2000) Alpha-secretase activity of the disintegrin metalloprotease ADAM 10. Influences of domain structure. Ann N Y Acad Sci 920:215–222

    Article  PubMed  CAS  Google Scholar 

  36. Christensen MA, Zhou W, Qing H et al (2004) Transcriptional regulation of BACE1, the beta-amyloid precursor protein beta-secretase, by Sp1. Mol Cell Biol 24:865–874

    Article  PubMed  CAS  Google Scholar 

  37. Tanaka T, Isoe-Wada K, Yamamori H et al (2006) Neurobiological studies of dementia–biological markers and neuroprotective strategies for Alzheimer disease. Acta Neurol Taiwan 15:68–71

    PubMed  Google Scholar 

  38. Bolognesi ML, Bartolini M, Mancini F et al (2010) Bis(7)-tacrine derivatives as multitarget-directed ligands: Focus on anticholinesterase and antiamyloid activities. ChemMedChem 5:1215–1220

    Article  PubMed  CAS  Google Scholar 

  39. Camps P, Formosa X, Galdeano C et al (2010) Tacrine-based dual binding site acetylcholinesterase inhibitors as potential disease-modifying anti-Alzheimer drug candidates. Chem Biol Interact 187:411–415

    Article  PubMed  CAS  Google Scholar 

  40. Jung HA, Jin SE, Choi RJ et al (2010) Anti-amnesic activity of neferine with antioxidant and anti-inflammatory capacities, as well as inhibition of ChEs and BACE1. Life Sci 87:420–430

    Article  PubMed  CAS  Google Scholar 

  41. Jung HA, Lee EJ, Kim JS et al (2009) Cholinesterase and BACE1 inhibitory diterpenoids from Aralia cordata. Arch Pharm Res 32:1399–1408

    Article  PubMed  CAS  Google Scholar 

  42. Jung HA, Min BS, Yokozawa T et al (2009) Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol Pharm Bull 32:1433–1438

    Article  PubMed  CAS  Google Scholar 

  43. Jung HA, Yokozawa T, Kim BW et al (2010) Selective inhibition of prenylated flavonoids from Sophora flavescens against BACE1 and cholinesterases. Am J Chin Med 38:415–429

    Article  PubMed  CAS  Google Scholar 

  44. Piazzi L, Cavalli A, Colizzi F et al (2008) Multi-target-directed coumarin derivatives: hAChE and BACE1 inhibitors as potential anti-Alzheimer compounds. Bioorg Med Chem Lett 18:423–426

    Article  PubMed  CAS  Google Scholar 

  45. Lin ME, Herr DR, Chun J (2010) Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins Other Lipid Mediat 91:130–138

    Article  PubMed  CAS  Google Scholar 

  46. Nakanaga K, Hama K, Aoki J (2010) Autotaxin–an LPA producing enzyme with diverse functions. J Biochem 148:13–24

    Article  PubMed  CAS  Google Scholar 

  47. Mufson EJ, Counts SE, Perez SE et al (2008) Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev Neurother 8:1703–1718

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Business of Future-oriented Technology Development program (Grant 2010-0018172), the Global Frontier Project grant (NRF-M1AXA002-2010-0029776) of National Research Foundation funded by the Ministry of Education, Science and Technology of Korea, and a grant from Korea Research Council for Industrial Science and Technology (KK-1103-A0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heeyeong Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, H., Lee, S.J., Lee, J. et al. Sphingosylphosphorylcholine Attenuated β–Amyloid Production by Reducing BACE1 Expression and Catalysis in PC12 Cells. Neurochem Res 36, 2083–2090 (2011). https://doi.org/10.1007/s11064-011-0532-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0532-0

Keywords

Navigation