Skip to main content
Log in

Protective Effects of Hypothalamic Proline-Rich Peptide and Cobra Venom Naja Naja Oxiana on Dynamics of Vestibular Compensation Following Unilateral Labyrinthectomy

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We tested the action of proline-rich peptide (PRP-1) and cobra venom Naja Naja Oxiana (NOX) on Deiters’ nucleus neurons at 3rd, 15th and 35th days after unilateral labyrinthectomy (UL). Early and late tetanic, post-tetanic potentiation and depression of Deiters’neurons to bilateral high frequency stimulation of hypothalamic supraoptic and paraventricualar nuclei was studied. The analysis of spike activity was carried out by mean of on-line selection and special program. The complex averaged peri-event time and frequency histograms shows the increase of inhibitory and excitatory reactions of Deiters’ neurons at early stage of vestibular compensation following PRP-1 and NOX injection, reaching the norm at the end of tests. In histochemical study the changes in Ca2+-dependent acidic phosphatase (AP) activity in neurons was discovered. It was shown that in UL animals the total disappearance or delay of decolorizing of Deiters’ neurons lead to neurodegenerative pattern as cellular “shade”. AP activity after UL and PRP-1 injection exerts more effective recovery of neurons in comparison with events, observed after the administration of NOX. The data of this study indicate that PRP-1 and NOX are protectors, which may successfully recover the disturbed vestibular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Curthoys IS, Halmagyi GM (1995) Vestibular compensation: a review of the oculomotor, neural and clinical consequences of unilateral vestibular loss. J Vestib Res 5:67–107

    Article  CAS  PubMed  Google Scholar 

  2. Dieringer N (1995) Vestibular compensation: neural plasticity and its relation to functional recovery after labyrinthine lesions in frog and other vertebrates. Prog Neurobiol 46:97–129

    Article  CAS  PubMed  Google Scholar 

  3. Yates BJ, Bronstein AM (2005) The effects of vestibular system lesions on autonomic regulation: observations, mechanisms, and clinical implications. J Vestib Res 15:119–129

    PubMed  Google Scholar 

  4. Smith FP, Curthoys SI (1989) Mechanisms of recovery following unilateral labyrinthectomy: a review. Brain Res Rev 14:155–180

    Article  CAS  PubMed  Google Scholar 

  5. Sarkisian VH (2000) Input-output relations of Deiters’ lateral vestibulospinal neurons with different structures of the brain. Arch Ital Biol 138:295–353

    CAS  PubMed  Google Scholar 

  6. Sawchenko PE, Swanson LW (1982) Immunohistochemical identification of neurons in the Paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Compar Neurol 205:260–273

    Article  CAS  Google Scholar 

  7. Swanson LW, Kuypers HGJM (1980) The paraventricular nucleus of the hypothalamus: +cytoarchitectonic subdivision an organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J Comp Neurol 194:555–570

    Article  CAS  PubMed  Google Scholar 

  8. Swanson L, Sawchenko P, Berod A et al (1981) An immunohistochemical study of the organization of catecholaminergic cells and terminal fields in the paraventricular and supraoptic nuclei of the hypothalamus. J Comp Neurol 196:271–285

    Article  CAS  PubMed  Google Scholar 

  9. Abrahamyan S, Meliksetyan I, Chavushyan V, Aloyan M, Sarkissian J (2007) Protective action of snake venom Naja Naja Oxiana at spinal cord hemisection. Clin Neurosci 60(3–4):148–153

    Google Scholar 

  10. Hambardzumyan LE, Manukyan LP, Chavushyan VA, Meliksetyan IB, Badalyan SA, Khalaji N, Hovhannisyan AL, Simon L, Sarkisian VH, Sarkissian JS (2009) Hypothalamic control of the activity of Deiters’ nucleus neurons. New Arm Med J 3(1):29–43

    Google Scholar 

  11. Galoyan AA (2004) Brain neurosecretory cytokines. immune response and neuronal survival. Plenum Publishers, Kluwer Acad, p 188

    Google Scholar 

  12. Galoyan AA (2008) The brain immune system: chemistry and biology of the signal molecules. In: Galoyan A, Besedovsky H (eds) Handbook of neurochemistry and molecular neurobiology, 3rd edition, v. neuroimmunology. pp 155–195

  13. Galoyan AA, Kipriyan TK, Sarkissian JS, Sarkissian EJ, Grigorian YKh, Andreasian AS, Chavushyan EA (2000) Protection against snake venom induced neuronal injury by the new hypothalamic neurohormone. Neurochem Res 25(6):791–800

    Article  CAS  PubMed  Google Scholar 

  14. Galoyan AA, Sarkissian JS, Kipriyan TK, Sarkissian EJ, Chavushyan EA, Meliksetyan IB, Abrahamyan SS, Grigoran YKh, Avetisyan ZA, Otieva NA (2001) Protective effect of a new hypothalamic peptide against cobra venom and trauma induced neuronal injury. Neurochem Res 26(8):1023–1038

    Article  CAS  PubMed  Google Scholar 

  15. Abrahamyan SS, Sarkissian JS, Meliksetyan IB, Galoyan AA (2003) Survival of trauma-injured neurons in rat brain by treatment with proline-rich peptide (PRP-1). An immunohistochemical study. Neurochem Res 29(4):695–708

    Article  Google Scholar 

  16. Galoyan AA, Sarkissian JS, Chavushyan EA, Abrahamyan SS, Avakyan ZE, Vahradyan HG, Poghosyan MV, Grigoryan YKh (2004) The study of protective effect of new hypothalamic proline-rich peptide PRP-1 on morpho-functional changes in hippocampus on model of Alzheimer’s disease evoked by intracerebral-ventricular injection of beta-amyloid peptide Aβ 25–35 in rats. Neurochem RAS NAS RA 21(4):265–288

    CAS  Google Scholar 

  17. Galoyan AA, Sarkissian JS, Chavushyan EA, Sulkhanyan RM, Avakyan ZE, Avetisyan ZA, Grigorian Kh, Abrahamyan DO (2005) Neuroprotective action of hypothalamic peptide PRP-1 at various time survival following spinal cord hemisection. Neurochem Res 30(4):507–525

    Article  CAS  PubMed  Google Scholar 

  18. Sarkissian JS, Yagdzyan GV, Abrahamyan DO, Chavushyan VA, Meliksetayn IB, Poghosyan MV, Galoyan AA (2005) Stimulation of regeneration of peripheral nerve by hypothalamic proline-rich peptide PRP-1 (Galarmin). Ann Plast Reconstr Aesthetic Surg (Moscow) 4:19–30

    Google Scholar 

  19. Galoyan AA, Sarkissian JS, Chavushyan VA, Avakyan ZE, Meliksetyan IB, Voskanyan AV, Mkrtchian HH, Poghosyan MV, Gevorkyan AJ, Avetisyan ZA, Abrahamyan DO (2007) Neuroprotective action of hypothalamic peptides PRP-1 and PRP-3 in envenoming by snake venoms. Nerochem RAS NAS RA 24(4):335–346

    Google Scholar 

  20. Galoyan AA, Sarkissian JS, Chavushyan VA, Meliksetyan IB, Avakyan ZE, Sulkhanyan RM, Poghosyan MV, Avetisyan ZA (2007) Neuroprotective action of new hypothalamic peptide PRP-3 at various time survival following spinal cord hemisection. Neurochem RAS NAS RA 1(2):160–172

    Google Scholar 

  21. Galoyan AA, Sarkissian JS, Chavushyan VA, Meliksetyan IB, Avakyan ZE, Sulkhanyan RM, Poghosyan MV, Avetisyan ZA (2007) Morpho-functional study of protective action of a new hypothalamic peptide PRP-3 on the neurons of spinal cord in different times after lateral hemisection. Neurochem RAS NAS RA 24(1):86–99

    Google Scholar 

  22. Galoyan AA, Sarkissian JS, Chavushyan VA, Meliksetyan IB, Avagyan ZE, Poghosyan MV, Vahradyan HG, Mkrtchian HH, Abrahamyan DO (2008) Neuroprotection by hypothalamic peptide proline-rich peptide-1 in Abeta 25–35 model of Alzheimer’s disease. Alzheimer’s Dement 4(5):332–344

    Article  CAS  Google Scholar 

  23. Castro FR, Farias AS, Proenca PL, de La Hoz C, Langone F, Oliveira EC, Toyama MH, Marangoni S, Santos LM (2007) The effect of treatment with crotapotin on the evolution of experimental autoimmune neuritis induced in Lewis rats. Toxicon 49:299–305

    Article  CAS  PubMed  Google Scholar 

  24. Chavushyan VA, Gevorkyan AZh, Avakyan ZE, Avetisyan ZA, Pogosyan MV, Sarkisyan JS (2006) The protective effect of Vipera raddei venom on peripheral nerve damage. Neurosci Behav Physiol 36(1):39–51

    Article  CAS  PubMed  Google Scholar 

  25. Figueroa E, Gordon LE, Feldhoff PW, Lassiter HA (2005) The administration of cobra venom factor reduces post-ischemic cerebral injury in adult and neonatal rats. Neurosci Lett 380:48–53

    Article  CAS  PubMed  Google Scholar 

  26. Koh DC, Armugam A, Jeyaseelan K (2006) Snake venom components and their applications in biomedicine. Cell Mol Life Sci 63:30–41

    Article  Google Scholar 

  27. Sarkissian JS, Galoyan AA, Chavushyan VA, Meliksetyan IB, Abrahamyan SS, Avakyan ZE, Aloyan ML, Voskanyan AV, Mkrtchian HM, Poghosyan MV, Kamenetsky VS (2006) Morpho-functional analysis of the protective action of snake venom Naja Naja Oxiana at spinal cord lateral hemisection. Neurochem RAS NAS RA 23(4):318–332

    Google Scholar 

  28. Sarkissian JS, Galoyan AA, Chavushyan VA, Meliksetyan IB, Avakyan ZE, Voskanyan AV, Poghosyan MV, Abrahamyan DO, Gevorgyan AJ, Avetisyan ZA (2006) Comparative morpho-functional study of protective effects of snake venoms Naja Naja Oxiana and Vipera Lebetina Obtusa in neurodegeneration of central and peripheral origin following sciatic nerve transection. Neurochem RAS NAS RA 23(4):333–349

    Google Scholar 

  29. Sarkissian J, Chavushyan V, Meliksetyan I, Poghosyan M, Avakyan Z, Voskanyan A, Mkrtchian H, Kamenetsky V, Abrahamyan D (2007) Protective effect of Naja naja oxiana cobra venom in rotenone-induced model of Parkinson’s disease: electrophysiological and histochemical analysis. New Armen Med J 1:43–56

    Google Scholar 

  30. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates, 5th edn. Acad. Press, New York, p 367

    Google Scholar 

  31. Meliksetyan IB (2007) A revelation Ca2+-dependent acidic phosphatase in cellular structions of the rat brain. Morphology 131(2):77–80

    CAS  Google Scholar 

  32. Bicov VN, Bajin AA, Chepur SV, Alexeev II, Vladimirova OO (2006) Morpho-functional changes of neurons under GABA-ergic toxic deprivation. Morphology 129(2):25

    Google Scholar 

  33. Head MW, Hurwitz L, Goldman J (1996) Transcriptional regulation of αB-crystallin in astrocytes: analysis of HSF and AP1 activation by different types of physiological stress. J Cell Sci 109:1029–1039

    CAS  PubMed  Google Scholar 

  34. Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3:715–727

    Article  CAS  PubMed  Google Scholar 

  35. Tighilet B, Lacour M (2001) Gamma amino-butyric acid (GABA) immunoreactivity in the vestibular nuclei of normal and unilateral vestibular neurectomized cats. Eur J Neurosci 13:2255–2267

    Article  CAS  PubMed  Google Scholar 

  36. Giardino L, Zanni M, Fernandez M et al (2002) Plasticity of GABA(a) system during ageing: focus on vestibular compensation and possible pharmacological intervention. Brain Res 929:76–86

    Article  CAS  PubMed  Google Scholar 

  37. Hermes M, Coderre E, Buijs R, Renaud L (1996) GABA and glutamate mediate rapid neurotransmission from the suprachiasmatic nucleus to hypothalamic paraventricular nucleus in rat. J Physiol 496:749–757

    CAS  PubMed  Google Scholar 

  38. Jensen K, Jensen MS, Lambert JD (1999) Role of presynaptic L-type CA2+ channels in gabaergic synaptic transmission in cultured hippocampal neurons. J Neurophysiol 81:1225–1230

    CAS  PubMed  Google Scholar 

  39. Bergquist F, Ruthven A, Ludwig M, Dutia MB (2006) Histaminergic and glycinergic modulation of GABA release in the vestibular nuclei of normal and labyrinthectomised rats. J Physiol 577:857–868

    Article  CAS  PubMed  Google Scholar 

  40. Humar M, Loop T, Schmidt R, Hoetzel A, Roesslein M, Andriopoulos N, Pahl HL, Geiger KK, Pannen BHJ (2007) The mitogen-activated protein kinase p38 regulates activator protein 1 by direct phosphorylation of c-Jun. Int J Biochem Cell Biol 39:2278–2288

    Article  CAS  PubMed  Google Scholar 

  41. Ricci G, Volpi L, Pasquali L, Petrozzi L, Siciliano G (2009) Astrocyte–neuron interactions in neurological disorders. J Biol Phys 35:317–336

    Article  CAS  PubMed  Google Scholar 

  42. Greenberg DA, Jin K (2006) Neurodegeneration and Neurogenesis: focus on Alzheimer’s disease. Curr Alzheimer Res 3(1):25–28

    Article  CAS  PubMed  Google Scholar 

  43. Galvan V, Bredesen DE (2007) Neurogenesis in the adult brain: implications for Alzheimer’s disease. CNS Neurol Disord Drug Targets 6(5):303–310

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaghinak H. Sarkisian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galoyan, A.A., Khalaji, N., Hambardzumyan, L.E. et al. Protective Effects of Hypothalamic Proline-Rich Peptide and Cobra Venom Naja Naja Oxiana on Dynamics of Vestibular Compensation Following Unilateral Labyrinthectomy. Neurochem Res 35, 1747–1760 (2010). https://doi.org/10.1007/s11064-010-0239-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0239-7

Keywords

Navigation