Skip to main content
Log in

Effect of Acute and Chronic Administration of Methylphenidate on Mitochondrial Respiratory Chain in the Brain of Young Rats

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Methylphenidate is commonly used for the treatment of attention deficit/hyperactivity disorder. There are still few works regarding the effects of methylphenidate on brain energy metabolism. Thus, in the present study we evaluated the effect of chronic administration of methylphenidate on the activities of mitochondrial respiratory chain complexes I and III in the brain of young rats. The effect of acute administration of methylphenidate on mitochondrial respiratory chain complexes I, II, III and IV in the brain of young rats was also investigated. For acute administration, a single injection of methylphenidate was given to rats on postnatal day 25. For chronic administration, methylphenidate injections were given starting at postnatal day 25 once daily for 28 days. Our results showed that complexes I and III were not affected by chronic administration of methylphenidate. Moreover, the acute administration of methylphenidate decreased complex I activity in cerebellum and prefrontal cortex, whereas complexes II, III and IV were not altered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Beal MF (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurological illnesses? Ann Neurol 1:119–130

    Article  Google Scholar 

  2. Beal MF (2005) Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 58:495–505

    Article  CAS  PubMed  Google Scholar 

  3. Blass JP (2001) Brain metabolism and brain disease: is metabolic deficiency the proximate cause of Alzheimer dementia? J Neurosci Res 66:851–856

    Article  CAS  PubMed  Google Scholar 

  4. Blass JP (2002) Glucose/mitochondria in neurological conditions. Int Rev Neurobiol 51:325–376

    Article  CAS  PubMed  Google Scholar 

  5. Heales SJ, Bolaños JP, Stewart VC et al (1999) Nitric oxide, mitochondria and neurological disease. Biochim Biophys Acta 1410:215–228

    Article  CAS  PubMed  Google Scholar 

  6. Land JM, Morgan-Hughes JA, Hargreaves I et al (2004) Mitochondrial disease: a historical, biochemical, and london perspective. Neurochem Res 29:483–491

    Article  CAS  PubMed  Google Scholar 

  7. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  8. Schurr A (2002) Energy metabolism, stress hormones and neural recovery from cerebral ischemia/hypoxia. Neurochem Int 41:1–8

    Article  CAS  PubMed  Google Scholar 

  9. Biederman J, Mick E, Faraone SV (2000) Age-dependent decline of symptoms of attention deficit hyperactivity disorder: impact of remission definition and symptom type. Am J Psychiatry 157:816–818

    Article  CAS  PubMed  Google Scholar 

  10. Challman TD, Lipsky JJ (2000) Methylphenidate: its pharmacology and uses. Mayo Clin Proc 75:711–721

    Article  CAS  PubMed  Google Scholar 

  11. Garland EJ (1998) Pharmacotherapy of adolescent attention deficit hyperactivity disorder: challenges, choices, caveats. J Psychopharmacol 12:385–395

    Article  CAS  PubMed  Google Scholar 

  12. Safer DJ, Allen RP (1989) Absence of tolerance to the behavioral effects of methylphenidate in hyperactive and inattentive children. J Pediatr 115:1003–1008

    Article  CAS  PubMed  Google Scholar 

  13. Volkow ND, Fowler JS, Wang GJ et al (2002) Mechanism of action of methylphenidate: insights from PET imaging studies. J Atten Disord 6(1):S31–43

    PubMed  Google Scholar 

  14. Wigal T, Swanson JM, Regino R et al (1999) Stimulant medications for the treatment of ADHD: efficacy and limitations. Ment Retard Dev Disabil Res Rev 5:215–224

    Article  Google Scholar 

  15. Faraone SV, Sergeant J, Gillberg C et al (2003) The worldwide prevalence of ADHD: is it an American condition? World Psychiatry 2:104–113

    PubMed  Google Scholar 

  16. Mannuzza S, Klein RG, Bessle A et al (1997) Educational and occupational outcome of hyperactive boys grown up. J Am Acad Child Adolesc Psychiatry 36:1222–1227

    Article  CAS  PubMed  Google Scholar 

  17. Mannuzza S, Klein RG, Bessle A et al (1998) Adult psychiatric status of hyperactive boys grown up. Am J Psychiatry 155:493–498

    CAS  PubMed  Google Scholar 

  18. Volkow ND, Wang GJ, Fowler JS et al (1998) Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate. Am J Psychiatry 155:1325–1331

    CAS  PubMed  Google Scholar 

  19. Volkow ND, Wang GJ, Fowler JS et al (2005) Imaging the effects of methylphenidate on brain dopamine: new model on its therapeutic actions for attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1410–1415

    Article  CAS  PubMed  Google Scholar 

  20. Porrino LJ, Lucignani G (1987) Different patterns of local brain energy metabolism associated with high and low doses of methylphenidate. Relevance to its action in hyperactive children. Biol Psychiatry 22:126–138

    Article  CAS  PubMed  Google Scholar 

  21. Scaini G, Fagundes AO, Rezin GT et al (2008) Methylphenidate increases creatine kinase activity in the brain of young and adult rats. Life Sci 83:795–800

    Article  CAS  PubMed  Google Scholar 

  22. Fagundes AO, Rezin GT, Zanette F et al (2007) Chronic administration of methylphenidate activates mitochondrial respiratory chain in brain of young rats. Int J Dev Neurosci 25:47–51

    Article  CAS  PubMed  Google Scholar 

  23. Chase TD, Brown RE, Carrey N et al (2003) Daily methylphenidate administration attenuates c-fos expression in the striatum of prepubertal rats. Neuroreport 14:769–772

    Article  CAS  PubMed  Google Scholar 

  24. Gerasimov MR, Franceschi M, Volkow ND et al (2000) Synergistic interactions between nicotine and cocaine or methylphenidate depend on the dose of dopamine transporter inhibitor. Synapse 38:432–437

    Article  CAS  PubMed  Google Scholar 

  25. Valvassori SS, Frey BN, Martins MR et al (2007) Sensitization and cross-sensitization after chronic treatment with methylphenidate in adolescent Wistar rats. Behav Pharmacol 18:205–212

    Article  CAS  PubMed  Google Scholar 

  26. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–267

    CAS  PubMed  Google Scholar 

  27. Cassina A, Radi R (1996) Differential inhibitory Aation of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316

    Article  CAS  PubMed  Google Scholar 

  28. Fischer JC, Ruitenbeek W, Berden JA et al (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–26

    Article  CAS  PubMed  Google Scholar 

  29. Rustin P, Chretien D, Bourgeron T et al (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51

    Article  CAS  PubMed  Google Scholar 

  30. Greenhill LL (2001) Clinical effects of stimulant medication in attention-deficit/hyperactivity disorder (ADHD). In: Solanto MV, Arnsten AFT, Castellanos FX (eds) Stimulant drugs and ADHD: basic and clinical neuroscience. Oxford University Press, New York, pp 31–71

    Google Scholar 

  31. Volkow ND (2006) Stimulant medications: how to minimize their reinforcing effects? Am J Psychiatry 163:359–361

    Article  PubMed  Google Scholar 

  32. Botly LC, Burton CL, Rizos Z et al (2008) Characterization of methylphenidate self-administration and reinstatement in the rat. Psychopharmacology 199:55–66

    Article  CAS  PubMed  Google Scholar 

  33. Yano M, Steiner H (2007) Methylphenidate and cocaine: the same effects on gene regulation? Trends Pharmacol Sci 28:588–596

    Article  CAS  PubMed  Google Scholar 

  34. Koob GF, Sanna PP, Bloom FE (1998) Neuroscience of addiction. Neuron 21:467–476

    Article  CAS  PubMed  Google Scholar 

  35. Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    Article  CAS  PubMed  Google Scholar 

  36. Schweri MM, Skolnick P, Rafferty MF et al (1985) [3H]Threo-(±)-methylphenidate binding to 3, 4-dihydroxyphenylethylamine uptake sites in corpus striatum: correlation with the stimulant properties of ritalinic acid esters. J Neurochem 45:1062–1070

    Article  CAS  PubMed  Google Scholar 

  37. Kuczenski R, Segal DS (1997) Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: Comparison with amphetamine. J Neurochem 68:2032–2037

    Article  CAS  PubMed  Google Scholar 

  38. Volkow ND, Wang GJ, Fowler JS et al (1999) Methylphenidate and cocaine have a similar in vivo potency to block dopamine transporters in the human brain. Life Sci 65:7–12

    Article  Google Scholar 

  39. Volkow ND, Wang G, Fowler JS et al (2001) Therapeutic doses of oral methylphenidate significantly increases extracellular dopamine in the human brain. J Neurosci 21:121

    Google Scholar 

  40. Brandon CL, Marinelli M, Baker KL et al (2001) Enhanced reactivity and vulnerability to cocaine following methylphenidate treatment in adolescent rats. Neuropsychopharmacology 25:651–661

    Article  CAS  PubMed  Google Scholar 

  41. Kuczenski R, Segal DS (2001) Locomotor effects of acute and repeated threshold doses of amphetamine and methylphenidate: Relative roles of dopamine and norepinephrine. J Pharmacol Exper Ther 296:876–883

    CAS  Google Scholar 

  42. Crawford CA, McDougall SA, Meier TL et al (1998) Repeated methylphenidate treatment induces behavioral sensitization and decreases protein kinase A and dopamine-stimulated adenylyl cyclase activity in the dorsal striatum. Psychopharmacology 136:34–43

    Article  CAS  PubMed  Google Scholar 

  43. McDougall SA, Collins RL, Karper PE et al (1999) Effects of repeated methylphenidate treatment in the young rat: sensitization of both locomotor activity and stereotyped sniffing. Exp Clin Psychopharmacol 7:208–218

    Article  CAS  PubMed  Google Scholar 

  44. Brown JM, Yamamoto BK (2003) Effects of amphetamines on mitochondrial function: role of free radicals and oxidative stress. Pharmacol Ther 99:45–53

    Article  CAS  PubMed  Google Scholar 

  45. Fukami G, Hashimoto K, Koike K et al (2004) Effect of antioxidant N-acetyl-l-cysteine on behavioral changes and neurotoxicity in rats after administration of methamphetamine. Brain Res 1016:90–95

    Article  CAS  PubMed  Google Scholar 

  46. Kim HS, Park WK (1995) Nitric oxide mediation of cocaine-induced dopaminergic behaviors: ambulation-accelerating activity, reverse tolerance and conditioned place preference in mice. J Pharmacol Exp Ther 275:551–557

    CAS  PubMed  Google Scholar 

  47. Przegalinski E, Filip M (1997) Nitric oxide (NO) pathway and locomotor hyperactivity towards dopaminomimetics in rats. Pol J Pharmacol 49:291–298

    CAS  PubMed  Google Scholar 

  48. Pudiak CM, Bozarth MA (2002) The effect of nitric oxide synthesis inhibition on intravenous cocaine self-administration. Prog Neuropsychopharmacol Biol Psychiatry 26:189–196

    Article  CAS  PubMed  Google Scholar 

  49. LaVoie MJ, Hastings TG (1999) Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J Neurosci 19:1484–1491

    CAS  PubMed  Google Scholar 

  50. Page G, Peeters M, Najimi M et al (2001) Modulation of the neuronal dopamine transporter activity by the metabotropic glutamate receptor mGluR5 in rat striatal synaptosomes through phosphorylation mediated processes. J Neurochem 76(5):1282–1290

    Article  CAS  PubMed  Google Scholar 

  51. Spina MB, Cohen G (1989) Dopamine turnover and glutathione oxidation: implications for Parkinson disease. Proc Natl Acad Sci USA 86:1398–1400

    Article  CAS  PubMed  Google Scholar 

  52. Adam-Vizi V (2005) Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal 7:1140–1149

    Article  CAS  PubMed  Google Scholar 

  53. Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:C670–686

    Article  CAS  PubMed  Google Scholar 

  54. Gruno M, Peet N, Tein A et al (2008) Atrophic gastritis: deficient complex I of the respiratory chain in the mitochondria of corpus mucosal cells. J Gastroenterol 43:780–788

    Article  CAS  PubMed  Google Scholar 

  55. Sen T, Sen N, Jana S et al (2007) Depolarization and cardiolipin depletion in aged rat brain mitochondria: relationship with oxidative stress and electron transport chain activity. Neurochem Int 50:719–725

    Article  CAS  PubMed  Google Scholar 

  56. Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 73:1127–1137

    Article  CAS  PubMed  Google Scholar 

  57. Prehn JH (1998) Mitochondrial transmembrane potential and free radical production in excitotoxic neurodegeneration. Naunyn-Schmiedeberg’s Arch Pharmacol 357:316–322

    Article  CAS  Google Scholar 

  58. Barja G, Herrero A (1998) Localization at complex I and mechanism of the higher free radical production of brain nonsynaptic mitochondria in the short-lived rat than in the longevous pigeon. J Bioenerg Biomembr 30:235–243

    Article  CAS  PubMed  Google Scholar 

  59. Gassner B, Wuthrich A, Scholtysik G et al (1997) The pyrethroids permethrin and cyhalothrin are potent inhibitors of the mitochondrial complex I. J Pharmacol Exp Ther 281:855–860

    CAS  PubMed  Google Scholar 

  60. Sherer TB, Betarbet R, Kim JH et al (2003) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 179:9–16

    Article  CAS  PubMed  Google Scholar 

  61. Lenaz G, Bovina C, Castelluccio C et al (1997) Mitochondrial complex I defects in aging. Mol Cell Biochem 174:329–333

    Article  CAS  PubMed  Google Scholar 

  62. Martins MR, Reinke A, Petronilho FC et al (2006) Methylphenidate treatment induces oxidative stress in young rat brain. Brain Res 1078:189–197

    Article  CAS  PubMed  Google Scholar 

  63. Madrigal JL, Olivenza R, Moro MA et al (2001) Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology 24:420–429

    Article  CAS  PubMed  Google Scholar 

  64. Torres RL, Torres ILS, Gamaro GD et al (2004) Lipid peroxidation and total radical-trapping potential of the lungs of rats submitted to chronic and sub-chronic stress. Braz J Med Biol Res 37:185–192

    Article  CAS  PubMed  Google Scholar 

  65. Boekema EJ, Braun HP (2007) Supramolecular structure of the mitochondrial oxidative phosphorylation system. J Biol Chem 282:1–4

    Article  CAS  PubMed  Google Scholar 

  66. Marsteller DA, Gerasimov MR, Schiffer WK et al (2002) Acute handling stress modulates methylphenidate-induced catecholamine overflow in themedial prefrontal cortex. Neuropsychopharmacology 27:163–170

    Article  CAS  PubMed  Google Scholar 

  67. Desmond JE, Fiez JA (1998) Neuroimaging studies of the cerebellum: language, learning, and memory. Trends Cogn Sci 2:355–362

    Article  Google Scholar 

  68. Middleton FA, Strick PL (2001) Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 21:700–712

    CAS  PubMed  Google Scholar 

  69. Fagundes AO, Scaini G, Santos PM et al (2010) Inhibition of mitochondrial respiratory chain in the brain of adult rats after acute and chronic administration of methylphenidate. Neurochem Res 35:405–411

    Article  CAS  PubMed  Google Scholar 

  70. Andreazza AC, Frey NB, Valvassori SS et al (2007) DNA damage in rats after treatment with methylphenidate. Prog Neuropsychopharmacol Biol Psychiatry 31:1282–1288

    Article  CAS  PubMed  Google Scholar 

  71. Kuczenski R, Segal DS (2002) Exposure of adolescent rats to oral methylphenidate: Preferential effects on extracellular norepinephrine and absence of sensitization and cross-sensitization to methamphetamine. J Neurosci 22:7264–7271

    CAS  PubMed  Google Scholar 

  72. Carlezon WA Jr, Nestler EJ (2002) Elevated levels of GluR1 in the midbrain: a trigger for sensitization to drugs of abuse? Trends Neurosci 25(2002):610–615

    Article  CAS  PubMed  Google Scholar 

  73. Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio L. Streck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fagundes, A.O., Aguiar, M.R., Aguiar, C.S. et al. Effect of Acute and Chronic Administration of Methylphenidate on Mitochondrial Respiratory Chain in the Brain of Young Rats. Neurochem Res 35, 1675–1680 (2010). https://doi.org/10.1007/s11064-010-0229-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0229-9

Keywords

Navigation