Skip to main content
Log in

The Role of Oxidative Stress in Amyotrophic Lateral Sclerosis and Parkinson’s Disease

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We examined oxidative stress markers of 31 patients suffering from ALS, 24 patients suffering from PD and 30 healthy subjects were included. We determined the plasma levels of lipid peroxidation (malondialdehyde, MDA), of protein oxidative lesions (plasma glutathione, carbonyls and thiols) and the activity of antioxidant enzymes i.e. erythrocyte Cu,Zn-Superoxide dismutase (SOD), Glutathione peroxidase (GSH-Px) and catalase. MDA and thiols were significantly different in both neurodegenerative diseases versus control population. A trend for an enhancement of oxidized glutathione was noted in ALS patients. Univariate analysis showed that SOD activity was significantly decreased in ALS and GSH-Px activity was decreased in PD. After adjusting for demographic parameters and enzyme cofactors, we could emphasize a compensatory increase of SOD activity in PD. Different antioxidant systems were not involved in the same way in ALS and PD, suggesting that oxidative stress may be a cause rather than a consequence of the neuronal death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALS:

Amyotrophic lateral sclerosis

EDTA:

Ethylenediaminetetraacetic acid

GSH-Px:

Glutathione peroxidase

MDA:

Malondialdehyde

MOPS:

3-N-morpholinopropaneslfonic acid

PD:

Parkinson’s disease

SOD:

Cu,Zn-Superoxide dismutase

References

  1. Evans PH, Yano E, Klinowski J et al (1992) Oxidative damage in Alzheimer’s dementia, and the potential etiopathogenic role of aluminosilicates, microglia and micronutrient interactions. Exs 62:178–189

    CAS  PubMed  Google Scholar 

  2. Facheris M, Beretta S, Ferrarese C (2004) Peripheral markers of oxidative stress and excitotoxicity in neurodegenerative disorders: tools for diagnosis and therapy? J Alzheimers Dis 6:177–184

    CAS  PubMed  Google Scholar 

  3. Bonnefont-Rousselot D, Lacomblez L, Jaudon M et al (2000) Blood oxidative stress in amyotrophic lateral sclerosis. J Neurol Sci 178:57–62

    Article  CAS  PubMed  Google Scholar 

  4. Siciliano G, D’Avino C, Del Corona A et al (2002) Impaired oxidative metabolism and lipid peroxidation in exercising muscle from ALS patients. Amyotroph Lateral Scler Other Motor Neuron Disord 3:57–62

    Article  CAS  PubMed  Google Scholar 

  5. Jenner P, Dexter DT, Sian J et al (1992) Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. The Royal Kings and Queens Parkinson’s Disease Research Group. Ann Neurol 32(Suppl):S82–S87

    Google Scholar 

  6. Jenner P, Schapira AH, Marsden CD (1992) New insights into the cause of Parkinson’s disease. Neurology 42:2241–2250

    CAS  PubMed  Google Scholar 

  7. Schapira AH, Mann VM, Cooper JM et al (1990) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55:2142–2145

    Article  CAS  PubMed  Google Scholar 

  8. Janetzky B, Hauck S, Youdim MB et al (1994) Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson’s disease. Neurosci Lett 169:126–128

    Article  CAS  PubMed  Google Scholar 

  9. Parker WD Jr, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26:719–723

    Article  PubMed  Google Scholar 

  10. Singer TP, Castagnoli N Jr, Ramsay RR et al (1987) Biochemical events in the development of parkinsonism induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. J Neurochem 49:1–8

    Article  CAS  PubMed  Google Scholar 

  11. Przedborski S, Jackson-Lewis V, Djaldetti R et al (2000) The parkinsonian toxin MPTP: action and mechanism. Restor Neurol Neurosci 16:135–142

    CAS  PubMed  Google Scholar 

  12. Greenamyre JT, Sherer TB, Betarbet R et al (2001) Complex I and Parkinson’s disease. IUBMB Life 52:135–141

    Article  CAS  PubMed  Google Scholar 

  13. Agil A, Duran R, Barrero F et al (2006) Plasma lipid peroxidation in sporadic Parkinson’s disease. Role of the L-dopa. J Neurol Sci 240:31–36

    Article  CAS  PubMed  Google Scholar 

  14. Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  CAS  PubMed  Google Scholar 

  15. Oteiza PI, Uchitel OD, Carrasquedo F et al (1997) Evaluation of antioxidants, protein, and lipid oxidation products in blood from sporadic amyotrophic lateral sclerosis patients. Neurochem Res 22:535–539

    Article  CAS  PubMed  Google Scholar 

  16. Bogdanov M, Brown RH, Matson W et al (2000) Increased oxidative damage to DNA in ALS patients. Free Radic Biol Med 29:652–658

    Article  CAS  PubMed  Google Scholar 

  17. Beal MF, Ferrante RJ, Browne SE et al (1997) Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol 42:644–654

    Article  CAS  PubMed  Google Scholar 

  18. Shibata N, Nagai R, Uchida K et al (2001) Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cords from sporadic amyotrophic lateral sclerosis patients. Brain Res 917:97–104

    Article  CAS  PubMed  Google Scholar 

  19. Cookson MR, Shaw PJ (1999) Oxidative stress and motor neurone disease. Brain Pathol 9:165–186

    Article  CAS  PubMed  Google Scholar 

  20. Grundman M (2000) Vitamin E and Alzheimer disease: the basis for additional clinical trials. Am J Clin Nutr 71:630S–636S

    CAS  PubMed  Google Scholar 

  21. Sano M, Ernesto C, Thomas RG et al (1997) A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N Engl J Med 336:1216–1222

    Article  CAS  PubMed  Google Scholar 

  22. Ascherio A, Weisskopf MG, O’Reilly EJ et al (2005) Vitamin E intake and risk of amyotrophic lateral sclerosis. Ann Neurol 57:104–110

    Article  CAS  PubMed  Google Scholar 

  23. Desnuelle C, Dib M, Garrel C et al (2001) A double-blind, placebo-controlled randomized clinical trial of alpha-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. ALS riluzole-tocopherol Study Group. Amyotroph Lateral Scler Other Motor Neuron Disord 2:9–18

    Article  CAS  PubMed  Google Scholar 

  24. Group TPS (1996) Impact of deprenyl and tocopherol treatment on Parkinson’s disease in DATATOP patients requiring levodopa. Parkinson Study Group. Ann Neurol 39:37–45

    Article  Google Scholar 

  25. Group PS (1993) Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. The Parkinson Study Group. N Engl J Med 328:176–183

    Article  Google Scholar 

  26. Fukunaga K, Yoshida M, Nakazono N (1998) A simple, rapid, highly sensitive and reproducible quantification method for plasma malondialdehyde by high-performance liquid chromatography. Biomed Chromatogr 12:300–303

    Article  CAS  PubMed  Google Scholar 

  27. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  28. Levine RL, Garland D, Oliver CN et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  CAS  PubMed  Google Scholar 

  29. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  PubMed  Google Scholar 

  30. Richard MJ, Belleville F, Chalas J et al (1997) Glutathione peroxidases: value of their determination in clinical biology. Ann Biol Clin (Paris) 55:195–207

    CAS  Google Scholar 

  31. Maehly AC, Chance B (1954) The assay of catalases and peroxidases. Methods Biochem Anal 1:357–424

    Article  CAS  PubMed  Google Scholar 

  32. Rowland LP (2000) Six important themes in amyotrophic lateral sclerosis (ALS) research, 1999. J Neurol Sci 180:2–6

    Article  CAS  PubMed  Google Scholar 

  33. Zarkovic K (2003) 4-Hydroxynonenal and neurodegenerative diseases. Mol Aspects Med 24:293–303

    Article  CAS  PubMed  Google Scholar 

  34. Martignoni E, Blandini F, Godi L et al (1999) Peripheral markers of oxidative stress in Parkinson’s disease. The role of L-DOPA. Free Radic Biol Med 27:428–437

    Article  CAS  PubMed  Google Scholar 

  35. Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 22:123–144

    Article  CAS  PubMed  Google Scholar 

  36. Saraymen R, Kilic E, Yazar S et al (2003) Influence of sex and age on the activity of antioxidant enzymes of polymorphonuclear leukocytes in healthy subjects. Yonsei Med J 44:9–14

    CAS  PubMed  Google Scholar 

  37. Kawamoto EM, Munhoz CD, Glezer I et al (2005) Oxidative state in platelets and erythrocytes in aging and Alzheimer’s disease. Neurobiol Aging 26:857–864

    Article  CAS  PubMed  Google Scholar 

  38. Bracco F, Scarpa M, Rigo A et al (1991) Determination of superoxide dismutase activity by the polarographic method of catalytic currents in the cerebrospinal fluid of aging brain and neurologic degenerative diseases. Proc Soc Exp Biol Med 196:36–41

    CAS  PubMed  Google Scholar 

  39. Barthwal MK, Srivastava N, Shukla R et al (1999) Polymorphonuclear leukocyte nitrite content and antioxidant enzymes in Parkinson’s disease patients. Acta Neurol Scand 100:300–304

    Article  CAS  PubMed  Google Scholar 

  40. Sudha K, Rao AV, Rao S et al (2003) Free radical toxicity and antioxidants in Parkinson’s disease. Neurol India 51:60–62

    CAS  PubMed  Google Scholar 

  41. Bao B, Prasad AS, Beck FW et al (2008) Zinc supplementation decreases oxidative stress, incidence of infection, and generation of inflammatory cytokines in sickle cell disease patients. Transl Res 152:67–80

    Article  CAS  PubMed  Google Scholar 

  42. Prasad AS, Beck FW, Bao B et al (2007) Zinc supplementation decreases incidence of infections in the elderly: effect of zinc on generation of cytokines and oxidative stress. Am J Clin Nutr 85:837–844

    CAS  PubMed  Google Scholar 

  43. Taysi S, Cikman O, Kaya A et al (2008) Increased oxidant stress and decreased antioxidant status in erythrocytes of rats fed with zinc-deficient diet. Biol Trace Elem Res 123:161–167

    Article  CAS  PubMed  Google Scholar 

  44. Messaoudi I, El Heni J, Hammouda F et al (2009) Protective effects of selenium, zinc, or their combination on cadmium-induced oxidative stress in rat kidney. Biol Trace Elem Res 130:152–161

    Article  CAS  PubMed  Google Scholar 

  45. Alexandrova A, Kebis A, Misl’anova C et al (2007) Copper impairs biliary epithelial cells and induces protein oxidation and oxidative DNA damage in the isolated perfused rat liver. Exp Toxicol Pathol 58:255–261

    Article  CAS  PubMed  Google Scholar 

  46. Kish SJ, Morito C, Hornykiewicz O (1985) Glutathione peroxidase activity in Parkinson’s disease brain. Neurosci Lett 58:343–346

    Article  CAS  PubMed  Google Scholar 

  47. Gil L, Siems W, Mazurek B et al (2006) Age-associated analysis of oxidative stress parameters in human plasma and erythrocytes. Free Radic Res 40:495–505

    Article  CAS  PubMed  Google Scholar 

  48. Mehmetcik G, Alptekin N, Toker G et al (1997) Mitochondrial lipid peroxides and antioxidant enzymes in the liver following phorone-induced glutathione depletion. Res Commun Mol Pathol Pharmacol 96:353–356

    CAS  PubMed  Google Scholar 

  49. Rondanelli M, Melzi d’Eril GV, Anesi A, Ferrari E (1997) Altered oxidative stress in healthy old subjects. Aging (Milano) 9:221–223

    CAS  Google Scholar 

  50. Przedborski S, Donaldson DM, Murphy PL et al (1996) Blood superoxide dismutase, catalase and glutathione peroxidase activities in familial and sporadic amyotrophic lateral sclerosis. Neurodegeneration 5:57–64

    Article  CAS  PubMed  Google Scholar 

  51. Storch A, Jost WH, Vieregge P et al (2007) Randomized, double-blind, placebo-controlled trial on symptomatic effects of coenzyme Q(10) in Parkinson disease. Arch Neurol 64:938–944

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athan Baillet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baillet, A., Chanteperdrix, V., Trocmé, C. et al. The Role of Oxidative Stress in Amyotrophic Lateral Sclerosis and Parkinson’s Disease. Neurochem Res 35, 1530–1537 (2010). https://doi.org/10.1007/s11064-010-0212-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0212-5

Keywords

Navigation