Skip to main content
Log in

Glycolysis Inhibition Decreases the Levels of Glutamate Transporters and Enhances Glutamate Neurotoxicity in the R6/2 Huntington′s Disease Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Excitotoxicity has been associated with the loss of medium spiny neurons (MSN) in Huntington’s disease (HD). We have previously observed that the content of the glial glutamate transporters, glutamate transporter 1 (GLT-1) and glutamate-aspartate transporter (GLAST), diminishes in R6/2 mice at 14 weeks of age but not at 10 weeks, and that this change correlates with an increased vulnerability of striatal neurons to glutamate toxicity. We have also reported that inhibition of the glycolytic pathway decreases glutamate uptake and enhances glutamate neurotoxicity in the rat brain. We now show that at 10-weeks of age, glutamate excitotoxicity is precipitated in R6/2 mice, after the treatment with iodoacetate (IOA), an inhibitor of the glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). IOA induces a larger inhibition of GAPDH in R6/2 mice, while it similarly reduces the levels of GLT-1 and GLAST in wild-type and transgenic animals. Results suggest that metabolic failure and altered glutamate uptake are involved in the vulnerability of striatal neurons to glutamate excitotoxicity in HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  2. Graveland GA, Williams RS, DiFiglia M (1985) Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science 227:770–773

    Article  CAS  PubMed  Google Scholar 

  3. Vonsattel JP, Myers RH, Stevens TJ et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    Article  CAS  PubMed  Google Scholar 

  4. McGeer EG, McGeer PL (1976) Duplication of biochemical changes of Huntington’s chorea by intrastriatal injections of glutamic and kainic acids. Nature 263:517–519

    Article  CAS  PubMed  Google Scholar 

  5. Schwarcz R, Whetsell WO, Mangano RM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219:316–318

    Article  CAS  PubMed  Google Scholar 

  6. Arzberger T, Krampfl K, Leimgruber S et al (1997) Changes of NMDA receptor subunit (NR1, NR2B) and glutamate transporter (GLT-1) mRNA expression in Huntington’s disease-an in situ hybridization study. J Neuropathol Exp Neurol 56:440–454

    Article  CAS  PubMed  Google Scholar 

  7. Nicniocaill B, Haraldsson B, Hansson O et al (2001) Altered striatal amino acid neurotransmitter release monitored using microdialysis in R6/1 Huntington transgenic mice. Eur J Neurosci 13:206–210

    Article  CAS  PubMed  Google Scholar 

  8. Liévens JC, Woodman B, Mahal A et al (2001) Impaired glutamate uptake in the R6 Huntington’s disease transgenic mice. Neurobiol Dis 8:807–821

    Article  PubMed  CAS  Google Scholar 

  9. Behrens PF, Franz P, Woodman B et al (2002) Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain 125:1908–1922

    Article  CAS  PubMed  Google Scholar 

  10. Shin JY, Fang ZH, Yu ZX et al (2005) Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol 171:1001–1012

    Article  CAS  PubMed  Google Scholar 

  11. Hassel B, Tessler S, Faull RL et al (2008) Glutamate uptake is reduced in prefrontal cortex in Huntington’s disease. Neurochem Res 33:232–237

    Article  CAS  PubMed  Google Scholar 

  12. Miller BR, Dorner JL, Shou M et al (2008) Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington’s disease phenotype in the R6/2 mouse. Neuroscience 153:329–337

    Article  CAS  PubMed  Google Scholar 

  13. Estrada-Sánchez AM, Montiel T, Segovia J et al (2009) Glutamate toxicity in the striatum of the R6/2 Huntington’s disease transgenic mice is age–dependent and correlates with decreased levels of glutamate transporters. Neurobiol Dis 34:78–86

    Article  PubMed  CAS  Google Scholar 

  14. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    Article  CAS  PubMed  Google Scholar 

  15. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629

    Article  CAS  PubMed  Google Scholar 

  16. Swanson RA, Chen J, Graham SH (1994) Glucose can fuel glutamate uptake in ischemic brain. J Cereb Blood Flow Metab 14:1–6

    CAS  PubMed  Google Scholar 

  17. Loaiza A, Porras OH, Barros LF (2003) Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy. J Neurosci 23:7337–7342

    CAS  PubMed  Google Scholar 

  18. Debernardi R, Magistretti PJ, Pellerin L (1999) Trans-inhibition of glutamate transport prevents excitatory amino acid-induced glycolysis in astrocytes. Brain Res 850:39–46

    Article  CAS  PubMed  Google Scholar 

  19. Cholet N, Pellerin L, Welker E et al (2001) Local injection of antisense oligonucleotides targeted to the glial glutamate transporter GLAST decreases the metabolic response to somatosensory activation. J Cereb Blood Flow Metab 21:404–412

    Article  CAS  PubMed  Google Scholar 

  20. Gemba T, Oshima T, Ninomiya M (1994) Glutamate efflux via the reversal of the sodium-dependent glutamate transporter caused by glycolytic inhibition in rat cultured astrocytes. Neuroscience 63:789–795

    Article  CAS  PubMed  Google Scholar 

  21. Ogata T, Nakamura Y, Tsuji K et al (1995) A possible mechanism for the hypoxia-hypoglycemia-induced release of excitatory amino acids from cultured hippocampal astrocytes. Neurochem Res 20:737–743

    Article  CAS  PubMed  Google Scholar 

  22. Camacho A, Montiel T, Massieu L (2006) The anion channel blocker, 4, 4’-dinitrostilbene-2, 2’-disulfonic acid prevents neuronal death and excitatory amino acid release during glycolysis inhibition in the hippocampus in vivo. Neuroscience 142:1005–1017

    Article  CAS  PubMed  Google Scholar 

  23. Hernández-Fonseca K, Massieu L (2005) Disruption of endoplasmic reticulum calcium stores is involved in neuronal death induced by glycolysis inhibition in cultured hippocampal neurons. J Neurosci Res 82:196–205

    Article  PubMed  CAS  Google Scholar 

  24. Massieu L, Haces ML, Montiel T et al (2003) Acetoacetate protects hippocampal neurons against glutamate-mediated neuronal damage during glycolysis inhibition. Neuroscience 120:365–378

    Article  CAS  PubMed  Google Scholar 

  25. Sabri MI, Ochs S (1971) Inhibition of glyceraldehyde-3-phosphate dehydrogenase in mammalian nerve by iodoacetic acid. J Neurochem 18:1509–1514

    Article  CAS  PubMed  Google Scholar 

  26. Hernández-Fonseca K, Cárdenas-Rodríguez N, Pedraza-Chaverri J et al (2008) Calcium-dependent production of reactive oxygen species is involved in neuronal damage induced during glycolysis inhibition in cultured hippocampal neurons. J Neurosci Res 86:1768–1780

    Article  PubMed  CAS  Google Scholar 

  27. Schmidt MM, Dringen R (2009) Differential effects of iodoacetamide and iodoacetate on glycolysis and glutathione metabolism of cultured astrocytes. Front Neuroenergetics 1:1–10

    PubMed  Google Scholar 

  28. Cárdenas-Rodríguez N, Guzmán-Beltrán S, Medina-Campos ON et al (2009) The effect of nordihydroguaiaretic acid on iodoacetate-induced toxicity in cultured neurons. J Biochem Mol Toxicol 23:137–142

    Article  PubMed  CAS  Google Scholar 

  29. Camacho A, Montiel T, Massieu L (2007) Sustained metabolic inhibition induces an increase in the content and phosphorylation of the NR2B subunit of N-methyl-D-aspartate receptors and a decrease in glutamate transport in the rat hippocampus in vivo. Neuroscience 30:873–886

    Article  CAS  Google Scholar 

  30. Massieu L, Gómez-Román N, Montiel T (2000) In vivo potentiation of glutamate-mediated neuronal damage after chronic administration of the glycolysis inhibitor iodoacetate. Exp Neurol 165:257–267

    Article  CAS  PubMed  Google Scholar 

  31. Mejía-Toiber J, Montiel T, Massieu L (2006) D-beta-hydroxybutyrate prevents glutamate-mediated lipoperoxidation and neuronal damage elicited during glycolysis inhibition in vivo. Neurochem Res 31:1399–1408

    Article  PubMed  CAS  Google Scholar 

  32. Matthews RT, Ferrante RJ, Jenkins BG et al (1997) Iodoacetate produces striatal excitotoxic lesions. J Neurochem 69:285–289

    Article  CAS  PubMed  Google Scholar 

  33. Sandberg M, Nyström B, Hamberger A (1985) Metabolically derived aspartate-elevated extracellular levels in vivo in iodoacetate poisoning. J Neurosci Res 13:489–495

    Article  CAS  PubMed  Google Scholar 

  34. Powers WJ, Videen TO, Markham J et al (2007) Selective defect of in vivo glycolysis in early Huntington’s disease striatum. Proc Natl Acad Sci USA 104:2945–2949

    Article  CAS  PubMed  Google Scholar 

  35. Jenkins BG, Rosas HD, Chen YC et al (1998) 1H NMR spectroscopy studies of Huntington’s disease: correlations with CAG repeat numbers. Neurology 50:1357–1365

    CAS  PubMed  Google Scholar 

  36. Burke JR, Enghild JJ, Martin ME et al (1996) Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat Med 2:347–350

    Article  CAS  PubMed  Google Scholar 

  37. Bae BI, Hara MR, Cascio MB et al (2006) Mutant huntingtin: nuclear translocation and cytotoxicity mediated by GAPDH. Proc Natl Acad Sci USA 103:3405–3409

    Article  CAS  PubMed  Google Scholar 

  38. Paxinos G, Franklin KJ (2004) The mouse brain in stereotaxic coordinates. Elsevier Academic Press, San Diego

    Google Scholar 

  39. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  40. Senatorov VV, Charles V, Reddy PH et al (2003) Overexpression and nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase in a transgenic mouse model of Huntington’s disease. Mol Cell Neurosci 22:285–297

    Article  CAS  PubMed  Google Scholar 

  41. Kish SJ, Lopes-Cendes I, Guttman M et al (1998) Brain glyceraldehyde-3-phosphate dehydrogenase activity in human trinucleotide repeat disorders. Arch Neurol 55:1299–1304

    Article  CAS  PubMed  Google Scholar 

  42. Browne SE, Bowling AC, MacGarvey U et al (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 41:646–653

    Article  CAS  PubMed  Google Scholar 

  43. Cooper AJ, Sheu KF, Burke JR et al (1998) Glyceraldehyde-3-phosphate dehydrogenase abnormality in metabolically stressed Huntington disease fibroblasts. Dev Neurosci 20:462–468

    Article  CAS  PubMed  Google Scholar 

  44. Morton AJ, Leavens W (2000) Mice transgenic for the human Huntington’s disease mutation have reduced sensitivity to kainic acid toxicity. Brain Res Bull 52:51–59

    Article  CAS  PubMed  Google Scholar 

  45. MacGibbon GA, Hamilton LC, Crocker SF et al (2002) Immediate-early gene response to methamphetamine, haloperidol, and quinolinic acid is not impaired in Huntington’s disease transgenic mice. J Neurosci Res 67:372–378

    Article  CAS  PubMed  Google Scholar 

  46. Hansson O, Guatteo E, Mercuri NB et al (2001) Resistance to NMDA toxicity correlates with appearance of nuclear inclusions, behavioural deficits and changes in calcium homeostasis in mice transgenic for exon 1 of the huntington gene. Eur J Neurosci 14:1492–1504

    Article  CAS  PubMed  Google Scholar 

  47. Tang TS, Tu H, Orban PC et al (2004) HAP1 facilitates effects of mutant huntingtin on inositol 1, 4, 5-trisphosphate-induced Ca release in primary culture of striatal medium spiny neurons. Eur J Neurosci 7:1779–1787

    Article  Google Scholar 

  48. Schiefer J, Sprünken A, Puls C et al (2004) The metabotropic glutamate receptor 5 antagonist MPEP and the mGluR2 agonist LY379268 modify disease progression in a transgenic mouse model of Huntington’s disease. Brain Res 1019:246–254

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Héctor Malagón for his help in the care and handling of transgenic mice at the animal house. This work was supported by PAPITT (UNAM) IN213507 grant to LM and CONACyT 194940 fellowship to AM Estrada-Sánchez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lourdes Massieu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estrada-Sánchez, A.M., Montiel, T. & Massieu, L. Glycolysis Inhibition Decreases the Levels of Glutamate Transporters and Enhances Glutamate Neurotoxicity in the R6/2 Huntington′s Disease Mice. Neurochem Res 35, 1156–1163 (2010). https://doi.org/10.1007/s11064-010-0168-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0168-5

Keywords

Navigation