Skip to main content

Advertisement

Log in

Role of Mitogen-Activated Protein Kinase Cascades in Inducible Nitric Oxide Synthase Expression by Lipopolysaccharide in a Rat Schwann Cell Line

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It is well known that the mitogen-activated protein kinase (MAPK) signal transduction pathways is involved in the regulation of inducible nitric oxide synthase (iNOS) in many cellular systems. However, sufficient information describing the role of MAPKs on iNOS expression in rat Schwann cells (SCs) is lacking. Therefore the paper was sought to investigate the role of MAPK cascades in iNOS expression following treatment of lipopolysaccharide (LPS) in a rat Schwann cell line RSC 96. Reverse transcriptase-PCR analysis (RT-PCR) and immunocytochemical staining were performed to detect iNOS expression following LPS induction. Next RT-PCR and Western blot analysis were employed to study expression of iNOS after using inhibitors selective for ERK (PD98059), JNK/SAPK (SP600125) and p38 (SB202190). The production of nitric oxide (NO) was measured by nitrate reductase method. LPS could significantly induce the expression of iNOS located in the cytoplasm in RSC 96 with a concentration- and time-dependent manner. Administration of inhibitors individually and combinations of the three inhibitors at micromolar concentrations suppressed the expression of iNOS and the production of NO. Based on these observations, it is proposed that LPS may activate the rat Schwann cell line RSC 96 to express iNOS and release NO via the MAPK signal transduction pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bhatheja K, Field J (2006) Schwann cells: origins and role in axonal maintenance and regeneration. Int J Biochem Cell Biol 38:1995–1999. doi:10.1016/j.biocel.2006.05.007

    Article  PubMed  CAS  Google Scholar 

  2. Stoll G, Jander S, Myers RR (2002) Degeneration and regeneration of the peripheral nervous system: from Augustus Waller’s observations to neuroinflammation. J Peripher Nerv Syst 7:13–27. doi:10.1046/j.1529-8027.2002.02002.x

    Article  PubMed  Google Scholar 

  3. Tofaris GK, Patterson PH, Jessen KR et al (2002) Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF. J Neurosci 22:6696–6703

    PubMed  CAS  Google Scholar 

  4. Wagner R, Myers RR (1996) Schwann cells produce tumor necrosis factor-alpha: expression in injured and non-injured nerves. J Neurosci 73:625–629. doi:10.1016/0306-4522(96)00127-3

    Article  CAS  Google Scholar 

  5. Levy D, Hoke A, Zochodne DW (1999) Local expression of inducible nitric oxide synthase in an animal model of neuropathic pain. Neurosci Lett 260:207–209. doi:10.1016/S0304-3940(98)00982-3

    Article  PubMed  CAS  Google Scholar 

  6. Gold R, Zielasek J, Kiefer R et al (1996) Secretion of nitrite by Schwann cells and its effect on T-cell activation in vitro. Cell Immunol 168:69–77. doi:10.1006/cimm.1996.0050

    Article  PubMed  CAS  Google Scholar 

  7. Cary SP, Winger JA, Derbyshire ER et al (2006) Nitric oxide signaling: no longer simply on or off. Trends Biochem Sci 31:231–239. doi:10.1016/j.tibs.2006.02.003

    Article  PubMed  CAS  Google Scholar 

  8. Saraiva RM, Hare JM (2006) Nitric oxide signaling in the cardiovascular system: implications for heart failure. Curr Opin Cardiol 21:221–228. doi:10.1097/01.hco.0000221584.56372.dc

    Article  PubMed  Google Scholar 

  9. Conti G, Rostami A, Scarpini E et al (2004) Inducible nitric oxide synthase (iNOS) in immune-mediated demyelination and Wallerian degeneration of the rat peripheral nervous system. Exp Neurol 187:350–358. doi:10.1016/j.expneurol.2004.01.026

    Article  PubMed  CAS  Google Scholar 

  10. Tinker AC, Wallace AV (2006) Selective inhibitors of inducible nitric oxide synthase: potential agents for the treatment of inflammatory diseases? Curr Top Med Chem 6:77–92. doi:10.2174/156802606775270297

    Article  PubMed  CAS  Google Scholar 

  11. Ulett GC, Adderson EE (2005) Nitric oxide is a key determinant of group B streptococcus-induced murine macrophage apoptosis. J Infect Dis 191:1761–1770. doi:10.1086/429693

    Article  PubMed  CAS  Google Scholar 

  12. Luo G, Peng D, Zheng J et al (2005) The role of NO in macrophage dysfunction at early stage after burn injury. Burns 31:138–144. doi:10.1016/j.burns.2004.09.009

    Article  PubMed  Google Scholar 

  13. StÃrling J, Binzer J, Andersson AK et al (2005) Nitric oxide contributes to cytokine-induced apoptosis in pancreatic beta cells via potentiation of JNK activity and inhibition of Akt. Diabetologia 48:2039–2050. doi:10.1007/s00125-005-1912-2

    Article  Google Scholar 

  14. Marriott HM, Ali F, Read RC et al (2004) Nitric oxide levels regulate macrophage commitment to apoptosis or necrosis during pneumococcal infection. FASEB J 18:1126–1128

    PubMed  CAS  Google Scholar 

  15. Zamora R, Bult H, Herman AG (1998) The role of prostaglandin E2 and nitric oxide in cell death in J774 murine macrophages. Eur J Pharmacol 349:307–315. doi:10.1016/S0014-2999(98)00211-8

    Article  PubMed  CAS  Google Scholar 

  16. Konukoglu D, Serin O, Turhan MS (2006) Plasma leptin and its relationship with lipid peroxidation and nitric oxide in obese female patients with or without hypertension. Arch Med Res 37:602–606. doi:10.1016/j.arcmed.2005.12.002

    Article  PubMed  CAS  Google Scholar 

  17. Nagareddy PR, Xia Z, MacLeod KM et al (2006) N-Acetylcysteine prevents nitrosative stress-associated depression of blood pressure and heart rate in streptozotocin diabetic rats. J Cardiovasc Pharmacol 47:513–520. doi:10.1097/01.fjc.0000211744.93701.25

    Article  PubMed  CAS  Google Scholar 

  18. Nagai H, Kumamoto H, Fukuda M et al (2003) Inducible nitric oxide synthase and apoptosis-related factors in the synovial tissues of temporomandibular joints with internal derangement and osteoarthritis. J Oral Maxillofac Surg 61:801–807. doi:10.1016/S0278-2391(03)00155-1

    Article  PubMed  Google Scholar 

  19. Kim SH, Kim J, Sharma RP (2004) Inhibition of p38 and ERK MAP kinases blocks endotoxin-induced nitric oxide production and differentially modulates cytokine expression. Pharmacol Res 49:433–439. doi:10.1016/j.phrs.2003.11.004

    Article  PubMed  CAS  Google Scholar 

  20. Feng GJ, Goodridge HS, Harnett MM et al (1999) Extracellular signal-related kinase (ERK) and p38 mitogen-activated protein (MAP) kinases differentially regulate the lipopolysaccharide-mediated induction of inducible nitric oxide synthase and IL-12 in macrophages: leishmania phosphoglycans subvert macrophage IL-12 production by targeting ERK MAP kinase. J Immunol 163:6403–6412

    PubMed  CAS  Google Scholar 

  21. Hai M, Muja N, DeVries GH et al (2002) Comparative analysis of Schwann cell lines as model systems for myelin gene transcription studies. J Neurosci Res 69:497–508. doi:10.1002/jnr.10327

    Article  PubMed  CAS  Google Scholar 

  22. Bhat NR, Zhang P, Lee JC et al (1998) Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-α gene expression in endotoxin-stimulated primary glial cultures. J Neurosci 18:1633–1641

    PubMed  CAS  Google Scholar 

  23. Chan ED, Riches DWH (2001) IFN-γ+LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38mapk in a mouse macrophage cell line. Am J Physiol Cell Physiol 280:C441–C450

    PubMed  CAS  Google Scholar 

  24. Monier RM, Orman KL, Meals EA et al (2002) Differential effects of p38- and extracellular signal-regulated kinase mitogen-activated protein kinase inhibitors on inducible nitric oxide synthase and tumor necrosis factor production in murine macrophages stimulated with Streptococcus pneumoniae. J Infect Dis 185:921–926. doi:10.1086/339483

    Article  PubMed  CAS  Google Scholar 

  25. Hua LL, Zhao ML, Cosenza M et al (2002) Role of mitogen-activated protein kinases in inducible nitric oxide synthase and TNF-a expression in human fetal astrocytes. J Neuroimmunol 126:180–189. doi:10.1016/S0165-5728(02)00055-3

    Article  PubMed  CAS  Google Scholar 

  26. Han IO, Kim KW, Ryu JH et al (2002) p38 mitogen-activated protein kinase mediates lipopolysaccharide, not interferon-gamma, induced inducible nitric oxide synthase expression in mouse Bv2 microglial cells. Neurosci Lett 325:9–12. doi:10.1016/S0304-3940(02)00218-5

    Article  PubMed  CAS  Google Scholar 

  27. Lahti A, Lähde M, Kankaanranta H et al (2000) Inhibition of extracellular signal-regulated kinase suppresses endotoxin-induced nitric oxide synthesis in mouse macrophages and in human colon epithelial cells. J Pharmacol Exp Ther 294:1188–1194

    PubMed  CAS  Google Scholar 

  28. Shen S, Yu S, Binek J et al (2005) Distinct signaling pathways for induction of type II NOS by IFNγ and LPS in BV-2 microglial cells. Neurochem Int 47:298–307. doi:10.1016/j.neuint.2005.03.007

    Article  PubMed  CAS  Google Scholar 

  29. Jana M, Anderson JA, Saha RN et al (2005) Regulation of inducible nitric oxide synthase in proinflammatory cytokine-stimulated human primary astrocytes. Free Radic Biol Med 38:655–664. doi:10.1016/j.freeradbiomed.2004.11.021

    Article  PubMed  CAS  Google Scholar 

  30. Abe S, Mizusawa I, Kanno K et al (2003) Nitric oxide synthase expressions in rat dorsal root ganglion after a hind limb tourniquet. Neuroreport 14:2267–2270. doi:10.1097/00001756-200312020-00026

    Article  PubMed  CAS  Google Scholar 

  31. Papadopolou S, Hartmann P, Lips KS et al (2004) Nicotinic receptor mediated stimulation of NO-generation in neurons of rat thoracic dorsal root ganglia. Neurosci Lett 361:32–35. doi:10.1016/j.neulet.2003.08.064

    Article  PubMed  CAS  Google Scholar 

  32. Qi WN, Yan ZQ, Whang PG et al (2001) Gene and protein expressions of nitric oxide synthases in ischemia-reperfused peripheral nerve of the rat. Am J Physiol 281:C849–C856

    CAS  Google Scholar 

  33. Zhu Y, Jones G, Tsutsui S et al (2005) Lentivirus infection causes neuroinflammation and neuronal injury in dorsal root ganglia: pathogenic effects of STAT-1 and inducible nitric oxide synthase. J Immunol 175:1118–1126

    PubMed  CAS  Google Scholar 

  34. Ajizian SJ, English BK, Meals EA (1999) Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-γ. J Infect Dis 179:939–944. doi:10.1086/314659

    Article  PubMed  CAS  Google Scholar 

  35. Goodya RJ, Hoytb CC, Tyler KL (2005) Reovirus infection of the CNS enhances iNOS expression in areas of virus-induced injury. Exp Neurol 195:379–390. doi:10.1016/j.expneurol.2005.05.016

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Nature Science Foundation of China (Grant No. 30300099 and No. 30770488), National Natural Science Foundation of Jiangsu province (BK2003035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiguo Shen.

Additional information

Haibo Wang and Chun Cheng have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Cheng, C., Qin, Y. et al. Role of Mitogen-Activated Protein Kinase Cascades in Inducible Nitric Oxide Synthase Expression by Lipopolysaccharide in a Rat Schwann Cell Line. Neurochem Res 34, 430–437 (2009). https://doi.org/10.1007/s11064-008-9801-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9801-y

Keywords

Navigation