Advertisement

Neurochemical Research

, Volume 33, Issue 3, pp 533–538 | Cite as

DARPP-32 and NCS-1 Expression is not Altered in Brains of Rats Treated with Typical or Atypical Antipsychotics

  • Bruno R. Souza
  • Bernardo S. Motta
  • Daniela V. F. Rosa
  • Karen C. L. Torres
  • Adalberto A. Castro
  • Clarissa M. Comim
  • André M. Sampaio
  • Fabrício F. Lima
  • Andreas Jeromin
  • João Quevedo
  • Marco A. Romano-SilvaEmail author
Original Paper

Abstract

Dopamine-mediated neurotransmission imbalances are associated with several psychiatry illnesses, such as schizophrenia. Recently it was demonstrated that two proteins involved in dopamine signaling are altered in prefrontal cortex (PFC) of schizophrenic patients. DARPP-32 is a key downstream effector of intracellular signaling pathway and is downregulated in PFC of schizophrenic subjects. NCS-1 is a neuronal calcium sensor that can inhibit dopamine receptor D2 internalization and is upregulated in PFC of schizophrenic subjects. It is well known that dopamine D2 receptor is the main target of antipsychotic. Therefore, our purpose was to study if chronic treatment with typical or atypical antipsychotics induced alterations in DARPP-32 and NCS-1 expression in five brain regions: prefrontal cortex, hippocampus, striatum, cortex and cerebellum. We did not find any changes in DARPP-32 and NCS-1 protein expression in any brain region investigated.

Keywords

DARPP-32 NCS-1 Antipsychotic Schizophrenia 

Notes

Acknowledgements

This research was supported by grants from Eli Lilly do Brazil, UNESC and CNPq.

References

  1. 1.
    Giros B, Jaber M, Jones SR et al (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612PubMedCrossRefGoogle Scholar
  2. 2.
    Packard MG, Knowlton BJ (2002) Learning and memory functions of the Basal Ganglia. Annu Rev Neurosci 25:563–593PubMedCrossRefGoogle Scholar
  3. 3.
    Lourenco GA, Dorce VA, Palermo-Neto J (2005) Haloperidol treatments increased macrophage activity in male and female rats: influence of corticosterone and prolactin serum levels. Eur Neuropsychopharmacol 15:271–277PubMedCrossRefGoogle Scholar
  4. 4.
    Kavelaars A, Cobelens PM, Teunis MA et al (2005) Changes in innate and acquired immune responses in mice with targeted deletion of the dopamine transporter gene. J Neuroimmunol 161:162–168PubMedCrossRefGoogle Scholar
  5. 5.
    Seeman P (1992) Dopamine receptor sequences. Therapeutic levels of neuroleptics occupy D2 receptors, clozapine occupies D4. Neuropsychopharmacology 7:261–284PubMedGoogle Scholar
  6. 6.
    Bergson C, Levenson R, Goldman-Rakic PS et al (2003) Dopamine receptor-interacting proteins: the Ca(2+) connection in dopamine signaling. Trends Pharmacol Sci 24:486–492PubMedCrossRefGoogle Scholar
  7. 7.
    Foubister V (2002) Do all paths lead to DARPP-32? Drug Discov Today 7:1068–1070PubMedCrossRefGoogle Scholar
  8. 8.
    Mueser KT, McGurk SR (2004) Schizophrenia. Lancet 363:2063–2072PubMedCrossRefGoogle Scholar
  9. 9.
    Souza BR, Souza RP, Rosa DV et al (2006) Dopaminergic intracellular signal integrating proteins: relevance to schizophrenia. Dialogues Clin Neurosci 8:95–100PubMedGoogle Scholar
  10. 10.
    Albert KA, Hemmings HC Jr, Adamo AI et al (2002) Evidence for decreased DARPP-32 in the prefrontal cortex of patients with schizophrenia. Arch Gen Psychiatry 59:705–712PubMedCrossRefGoogle Scholar
  11. 11.
    Ishikawa M, Mizukami K, Iwakiri M, Asada T (2007) Immunohistochemical and immunoblot analysis of Dopamine and cyclic AMP-regulated phosphoprotein, relative molecular mass 32,000 (DARPP-32) in the prefrontal cortex of subjects with schizophrenia and bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry [Epub ahead of print]Google Scholar
  12. 12.
    Stoof JC, Kebabian JW (1981) Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum. Nature 294:366–368PubMedCrossRefGoogle Scholar
  13. 13.
    Nishi A, Snyder GL, Greengard P (1997) Bidirectional regulation of DARPP-32 phosphorylation by dopamine. J Neurosci 17:8147–8155PubMedGoogle Scholar
  14. 14.
    Svenningsson P, Lindskog M, Ledent C et al (2000) Regulation of the phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa in vivo by dopamine D1, dopamine D2, and adenosine A2A receptors. Proc Natl Acad Sci USA 97:1856–1860PubMedCrossRefGoogle Scholar
  15. 15.
    Lindskog M, Svenningsson P, Fredholm BB et al (1999) Activation of dopamine D2 receptors decreases DARPP-32 phosphorylation in striatonigral and striatopallidal projection neurons via different mechanisms. Neuroscience 88:1005–1008PubMedCrossRefGoogle Scholar
  16. 16.
    Svenningsson P, Nishi A, Fisone G et al (2004) DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 44:269–296PubMedCrossRefGoogle Scholar
  17. 17.
    Koh PO, Undie AS, Kabbani N et al (2003) Up-regulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients. Proc Natl Acad Sci USA 100:313–317PubMedCrossRefGoogle Scholar
  18. 18.
    Bai J, He F, Novikova SI et al (2004) Abnormalities in the dopamine system in schizophrenia may lie in altered levels of dopamine receptor-interacting proteins. Biol Psychiatry 56:427–440PubMedCrossRefGoogle Scholar
  19. 19.
    Nakayama S, Moncrief ND, Kretsinger RH (1992) Evolution of EF-hand calcium-modulated proteins. II. Domains of several subfamilies have diverse evolutionary histories. J Mol Evol 34:416–448PubMedCrossRefGoogle Scholar
  20. 20.
    Nef S, Fiumelli H, de Castro E et al (1995) Identification of neuronal calcium sensor (NCS-1) possibly involved in the regulation of receptor phosphorylation. J Recept Signal Transduct Res 15:365–378PubMedCrossRefGoogle Scholar
  21. 21.
    Ames JB, Ishima R, Tanaka T et al (1997) Molecular mechanics of calcium-myristoyl switches. Nature 389:198–202PubMedCrossRefGoogle Scholar
  22. 22.
    O’Callaghan DW, Ivings L, Weiss JL et al (2002) Differential use of myristoyl groups on neuronal calcium sensor proteins as a determinant of spatio-temporal aspects of Ca2+ signal transduction. J Biol Chem 277:14227–14237PubMedCrossRefGoogle Scholar
  23. 23.
    O’Callaghan DW, Burgoyne RD (2003) Role of myristoylation in the intracellular targeting of neuronal calcium sensor (NCS) proteins. Biochem Soc Trans 31:963–965PubMedCrossRefGoogle Scholar
  24. 24.
    Martone ME, Edelmann VM, Ellisman MH et al (1999) Cellular and subcellular distribution of the calcium-binding protein NCS-1 in the central nervous system of the rat. Cell Tissue Res 295:395–407PubMedCrossRefGoogle Scholar
  25. 25.
    Kabbani N, Negyessy L, Lin R et al (2002) Interaction with neuronal calcium sensor NCS-1 mediates desensitization of the D2 dopamine receptor. J Neurosci 22:8476–8486PubMedGoogle Scholar
  26. 26.
    Callier S, Snapyan M, Le Crom S et al (2003) Evolution and cell biology of dopamine receptors in vertebrates. Biol Cell 95:489–502PubMedCrossRefGoogle Scholar
  27. 27.
    Iwata K, Ito K, Fukuzaki A et al (1999) Dynamin and rab5 regulate GRK2-dependent internalization of dopamine D2 receptors. Eur J Biochem 263:596–602PubMedCrossRefGoogle Scholar
  28. 28.
    Negyessy L, Goldman-Rakic PS (2005) Subcellular localization of the dopamine D2 receptor and coexistence with the calcium-binding protein neuronal calcium sensor-1 in the primate prefrontal cortex. J Comp Neurol 488:464–475PubMedCrossRefGoogle Scholar
  29. 29.
    Seeman P (2006) Targeting the dopamine D2 receptor in schizophrenia. Expert Opin Ther Targets 10:515–531PubMedCrossRefGoogle Scholar
  30. 30.
    Reinke A, Martins MR, Lima MS et al (2004) Haloperidol and clozapine, but not olanzapine, induces oxidative stress in rat brain. Neurosci Lett 372:157–160PubMedCrossRefGoogle Scholar
  31. 31.
    Polydoro M, Schröder N, Lima MNM et al (2004) Haloperidol- and clozapine-induced oxidative stress in the rat brain. Pharmacol Biochem Behav 78:751–756PubMedCrossRefGoogle Scholar
  32. 32.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  33. 33.
    Bonci A, Hopf FW (2005) The dopamine D2 receptor: new surprises from an old friend. Neuron 47:335–338PubMedCrossRefGoogle Scholar
  34. 34.
    Meyer-Lindenberg A, Straub RE, Lipska BK et al (2007) Genetic evidence implicating DARPP-32 in human frontostriatal structure, function, and cognition. J Clin Invest 117:672–682PubMedCrossRefGoogle Scholar
  35. 35.
    Grebb JA, Girault JA, Ehrlich M et al (1990) Chronic treatment of rats with SCH-23390 or raclopride does not affect the concentrations of DARPP-32 or its mRNA in dopamine-innervated brain regions. J Neurochem 55:204–207PubMedCrossRefGoogle Scholar
  36. 36.
    Guitart X, Nestler EJ (1992) Chronic administration of lithium or other antidepressants increases levels of DARPP-32 in rat frontal cortex. J Neurochem 59:1164–1167PubMedCrossRefGoogle Scholar
  37. 37.
    Krupnick JG, Benovic JL (1998) The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol 38:289–319PubMedCrossRefGoogle Scholar
  38. 38.
    Kim KM, Valenzano KJ, Robinson SR et al (2001) Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and beta-arrestins. J Biol Chem 276:37409–37414PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Bruno R. Souza
    • 1
  • Bernardo S. Motta
    • 1
  • Daniela V. F. Rosa
    • 1
  • Karen C. L. Torres
    • 1
  • Adalberto A. Castro
    • 2
  • Clarissa M. Comim
    • 2
  • André M. Sampaio
    • 1
  • Fabrício F. Lima
    • 1
  • Andreas Jeromin
    • 3
  • João Quevedo
    • 2
  • Marco A. Romano-Silva
    • 1
    • 4
    Email author
  1. 1.Laboratório de Neurociências, Departamento de Saúde Mental, Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Laboratorio de Neurociências, Programa de Pós-Graduação em Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciumaBrazil
  3. 3.Center for Learning and MemoryUniversity of Texas at AustinAustinUSA
  4. 4.Departamento de Farmacologia – ICBUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations