Skip to main content

Advertisement

Log in

Mesenchymal Stem Cells from Rat Bone Marrow Downregulate Caspase-3-mediated Apoptotic Pathway After Spinal Cord Injury in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells have been intensively studied for their potential use in reparative strategies for neurodegenerative diseases and traumatic injuries. We used mesenchymal stem cells (rMSC) from rat bone marrow to evaluate the therapeutic potential after spinal cord injury (SCI). Immunohistochemistry confirmed a large number of apoptotic neurons and oligodendrocytes in caudal segments 2 mm away from the lesion site. Expression of caspase-3 on both neurons and oligodendrocytes after SCI was significantly downregulated by rMSC. Caspase-3 downregulation by rMSC involves increased expression of FLIP and XIAP in the cytosol and inhibition of PARP cleavage in the nucleus. Animals treated with rMSC had higher Basso, Beattie, Bresnahan (BBB) locomotor scoring and better recovery of hind limb sensitivity. Treatment with rMSC had a positive effect on behavioral outcome and histopathological assessment after SCI. The ability of rMSC to incorporate into the spinal cord, differentiate and to improve locomotor recovery hold promise for a potential cure after SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

APC:

Adenomatous polyposis coli

BBB:

Basso Beattie Bresnahan locomotor scoring

BCA:

Bicinchoninic acid

BDNF:

Brain derived neurotrophic factor

bFGF:

Basic fibroblast growth factor

BSA:

Bovine serum albumin

CHAPS:

3-[(3-Cholamidopropyl) dimethylammonio]-1-propanesulfonate

CNPase:

2′,3′-cyclicnucleotide-3′-phosphodiesterase

DAB:

Diaminobenzidine

DAPI :

4′,6-Diamidino-2-phenylindole dihydrochloride

DPI:

Days post injury

DTT:

Dithiothreitol

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

FLIP:

FLICE-inhibitory protein

GFAP:

Glial fibrillary acidic protein

hEGF:

Human epidermal growth factor

HRP:

Horseradish peroxidase

β-NGF:

Beta-nerve growth factor

NF-200:

Neurofilament H-200 kD

NT-3:

Neurotrophic hormone-3

PARP:

Poly[ADP-ribose] polymerase

PBS:

Phosphate buffered saline

PMSF:

Phenyl methane sulfonyl fluoride

RA:

Retinoic acid

rMSC:

Rat bone marrow mesenchymal stem cells

SCI:

Spinal cord injury

XIAP:

X-linked inhibitor of apoptosis protein

References

  1. Akiyama Y, Radtke C, Kocsis JD (2002) Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J Neurosci 22:6623–6630

    PubMed  CAS  Google Scholar 

  2. McDonald JW, Liu XZ, Qu Y, Liu S, Mickey SK, Turetsky D, Gottlieb DI, Choi DW (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5:1410–1412

    Article  PubMed  CAS  Google Scholar 

  3. Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96:10711–10716

    Article  PubMed  CAS  Google Scholar 

  4. Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370

    Article  PubMed  CAS  Google Scholar 

  5. Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Beattie MS (1997) Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med 3:73–76

    Article  PubMed  CAS  Google Scholar 

  6. Emery E, Aldana P, Bunge MB, Puckett W, Srinivasan A, Keane RW, Bethea J, Levi AD (1998) Apoptosis after traumatic human spinal cord injury. J Neurosurg 89:911–920

    Article  PubMed  CAS  Google Scholar 

  7. Li GL, Farooque M, Holtz A, Olsson Y (1999) Apoptosis of oligodendrocytes occurs for long distances away from the primary injury after compression trauma to rat spinal cord. Acta Neuropathol (Berl) 98:473–480

    Article  CAS  Google Scholar 

  8. Liu XZ, Xu XM, Hu R, Du C, Zhang SX, McDonald JW, Dong HX, Wu YJ, Fan GS, Jacquin MF, Hsu CY, Choi DW (1997) Neuronal and glial apoptosis after traumatic spinal cord injury. J Neurosci 17:5395–5406

    PubMed  CAS  Google Scholar 

  9. Shuman SL, Bresnahan JC, Beattie MS (1997) Apoptosis of microglia and oligodendrocytes after spinal cord contusion in rats. J Neurosci Res 50:798–808

    Article  PubMed  CAS  Google Scholar 

  10. Abe Y, Yamamoto T, Sugiyama Y, Watanabe T, Saito N, Kayama H, Kumagai T (1999) Apoptotic cells associated with Wallerian degeneration after experimental spinal cord injury: a possible mechanism of oligodendroglial death. J Neurotrauma 16:945–952

    PubMed  CAS  Google Scholar 

  11. Warden P, Bamber NI, Li H, Esposito A, Ahmad KA, Hsu CY, Xu XM (2001) Delayed glial cell death following wallerian degeneration in white matter tracts after spinal cord dorsal column cordotomy in adult rats. Exp Neurol 168:213–224

    Article  PubMed  CAS  Google Scholar 

  12. Casha S, Yu WR, Fehlings MG (2005) FAS deficiency reduces apoptosis, spares axons and improves function after spinal cord injury. Exp Neurol 196:390–400

    Article  PubMed  CAS  Google Scholar 

  13. Citron BA, Arnold PM, Sebastian C, Qin F, Malladi S, Ameenuddin S, Landis ME, Festoff BW (2000) Rapid upregulation of caspase-3 in rat spinal cord after injury: mRNA, protein, and cellular localization correlates with apoptotic cell death. Exp Neurol 166:213–226

    Article  PubMed  CAS  Google Scholar 

  14. Katoh K, Ikata T, Katoh S, Hamada Y, Nakauchi K, Sano T, Niwa M (1996) Induction and its spread of apoptosis in rat spinal cord after mechanical trauma. Neurosci Lett 216:9–12

    Article  PubMed  CAS  Google Scholar 

  15. Lee SM, Yune TY, Kim SJ, Park DW, Lee YK, Kim YC, Oh YJ, Markelonis GJ, Oh TH (2003) Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat. J Neurotrauma 20:1017–1027

    Article  PubMed  Google Scholar 

  16. Lou J, Lenke LG, Ludwig FJ, O’Brien MF (1998) Apoptosis as a mechanism of neuronal cell death following acute experimental spinal cord injury. Spinal Cord 36:683–690

    Article  PubMed  CAS  Google Scholar 

  17. Nottingham S, Knapp P, Springer J (2002) FK506 treatment inhibits caspase-3 activation and promotes oligodendroglial survival following traumatic spinal cord injury. Exp Neurol 177:242–251

    Article  PubMed  CAS  Google Scholar 

  18. Nottingham SA, Springer JE (2003) Temporal and spatial distribution of activated caspase-3 after subdural kainic acid infusions in rat spinal cord. J Comp Neurol 464:463–471

    Article  PubMed  CAS  Google Scholar 

  19. Springer JE, Azbill RD, Knapp PE (1999) Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat Med 5:943–946

    Article  PubMed  CAS  Google Scholar 

  20. Springer JE, Azbill RD, Nottingham SA, Kennedy SE (2000) Calcineurin-mediated BAD dephosphorylation activates the caspase-3 apoptotic cascade in traumatic spinal cord injury. J Neurosci 20:7246–7251

    PubMed  CAS  Google Scholar 

  21. Yong C, Arnold PM, Zoubine MN, Citron BA, Watanabe I, Berman NE, Festoff BW (1998) Apoptosis in cellular compartments of rat spinal cord after severe contusion injury. J Neurotrauma 15:459–472

    PubMed  CAS  Google Scholar 

  22. Casha S, Yu WR, Fehlings MG (2001) Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat. Neuroscience 103:203–218

    Article  PubMed  CAS  Google Scholar 

  23. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21

    PubMed  CAS  Google Scholar 

  24. Merkler D, Metz GA, Raineteau O, Dietz V, Schwab ME, Fouad K (2001) Locomotor recovery in spinal cord-injured rats treated with an antibody neutralizing the myelin-associated neurite growth inhibitor Nogo-A. J Neurosci 21:3665–3673

    PubMed  CAS  Google Scholar 

  25. Laemmli UK, Favre M (1973) Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol 80:575–899

    Article  PubMed  CAS  Google Scholar 

  26. Li GL, Brodin G, Farooque M, Funa K, Holtz A, Wang WL, Olsson Y (1996) Apoptosis and expression of Bcl-2 after compression trauma to rat spinal cord. J Neuropathol Exp Neurol 55:280–289

    PubMed  CAS  Google Scholar 

  27. Ohori Y, Yamamoto S, Nagao M, Sugimori M, Yamamoto N, Nakamura K, Nakafuku M (2006) Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural progenitors in the injured adult spinal cord. J Neurosci 26:11948–11960

    Article  PubMed  CAS  Google Scholar 

  28. Klein S, Svendsen CN (2005) Stem cells in the injured spinal cord: reducing the pain and increasing the gain. Nat Neurosci 8:259–260

    Article  PubMed  CAS  Google Scholar 

  29. Ankeny DP, McTigue DM, Jakeman LB (2004) Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats. Exp Neurol 190:17–31

    Article  PubMed  Google Scholar 

  30. Goh EL, Ma D, Ming GL, Song H (2003) Adult neural stem cells and repair of the adult central nervous system. J Hematother Stem Cell Res 12:671–679

    Article  PubMed  Google Scholar 

  31. McDonald JW, Howard MJ (2002) Repairing the damaged spinal cord: a summary of our early success with embryonic stem cell transplantation and remyelination. Prog Brain Res 137:299–309

    Article  PubMed  Google Scholar 

  32. Ruitenberg MJ, Vukovic J, Sarich J, Busfield SJ, Plant GW (2006) Olfactory ensheathing cells: characteristics, genetic engineering, and therapeutic potential. J Neurotrauma 23:468–478

    Article  PubMed  Google Scholar 

  33. Cizkova D, Rosocha J, Vanicky I, Jergova S, Cizek M (2006) Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cell Mol Neurobiol 26:1167–1180

    Article  PubMed  Google Scholar 

  34. Kuh SU, Cho YE, Yoon DH, Kim KN, Ha Y (2005) Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat. Acta Neurochir (Wien) 147:985–992

    Article  Google Scholar 

  35. Liu S, Qu Y, Stewart TJ, Howard MJ, Chakrabortty S, Holekamp TF, McDonald JW (2000) Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci USA 97:6126–6131

    Article  PubMed  CAS  Google Scholar 

  36. Lu P, Jones LL, Tuszynski MH (2005) BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol 191:344–360

    Article  PubMed  CAS  Google Scholar 

  37. Lu P, Jones LL, Snyder EY, Tuszynski MH (2003) Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 181:115–129

    Article  PubMed  CAS  Google Scholar 

  38. Saporta S, Kim JJ, Willing AE, Fu ES, Davis CD, Sanberg PR (2003) Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J Hematother Stem Cell Res 12:271–278

    Article  PubMed  CAS  Google Scholar 

  39. Movsesyan VA, Yakovlev AG, Fan L, Faden AI (2001) Effect of serine protease inhibitors on posttraumatic brain injury and neuronal apoptosis. Exp Neurol 167:366–375

    Article  PubMed  CAS  Google Scholar 

  40. Ozawa H, Keane RW, Marcillo AE, Diaz PH, Dietrich WD (2002) Therapeutic strategies targeting caspase inhibition following spinal cord injury in rats. Exp Neurol 177:306–313

    Article  PubMed  CAS  Google Scholar 

  41. Genovese T, Mazzon E, Di Paola R, Muia C, Threadgill MD, Caputi AP, Thiemermann C, Cuzzocrea S (2005) Inhibitors of poly(ADP-ribose) polymerase modulate signal transduction pathways and the development of bleomycin-induced lung injury. J Pharmacol Exp Ther 313:529–538

    Article  PubMed  CAS  Google Scholar 

  42. Keane RW, Kraydieh S, Lotocki G, Bethea JR, Krajewski S, Reed JC, Dietrich WD (2001) Apoptotic and anti-apoptotic mechanisms following spinal cord injury. J Neuropathol Exp Neurol 60:422–429

    PubMed  CAS  Google Scholar 

  43. Scott GS, Szabo C, Hooper DC (2004) Poly(ADP-ribose) polymerase activity contributes to peroxynitrite-induced spinal cord neuronal cell death in vitro. J Neurotrauma 21:1255–1263

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Noorjehan Ali for technical assistance. We thank Shellee Abraham for manuscript preparation and Diana Meister and Sushma Jasti for manuscript review. This research was supported by National Cancer Institute Grant CA 75557, CA 92393, CA 95058, CA 116708, N.I.N.D.S. NS47699 and NS57529, and Caterpillar, Inc., OSF Saint Francis, Inc., Peoria, IL (to J.S.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dzung H. Dinh.

Additional information

Special issue in honor of Naren Banik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dasari, V.R., Spomar, D.G., Cady, C. et al. Mesenchymal Stem Cells from Rat Bone Marrow Downregulate Caspase-3-mediated Apoptotic Pathway After Spinal Cord Injury in Rats. Neurochem Res 32, 2080–2093 (2007). https://doi.org/10.1007/s11064-007-9368-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9368-z

Keywords

Navigation