Skip to main content

Advertisement

Log in

Shortage of Lipid-radical Cycles in Membranes as a Possible Prime Cause of Energetic Failure in Aging and Alzheimer Disease

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Polyunsaturated fatty acids (PUFA) and α-tocopherol (α-TOH) are the most oxygen-sensitive constituents of cells. α-TOH is a member of the vitamin E family that is considered the most important lipophilic antioxidant in cell membranes. Its importance is emphasized by the involvement of oxidative stress in injury to the central nervous system and neurodegenerative diseases. Currently, α-TOH transfer protein (TTP), is believed to play a significant role in maintaining the vitamin status but the presence of α-TOH in membranes is required but not sufficient to protect the membranes against lipid hydroperoxides (LOOH) formation. The lipid-radical theory presented in this review considers the role of two membrane factors—α-tocopherol and cytochrome b5; these factors secure the functioning of lipid-radical cycles and the participation of lipid-radical reactions in the key membrane processes. The prominent intermembrane reaction realized via a protein–lipid interaction, during which electron transport from cytochrome b5—located in the outer membrane—to peroxyl radical (LOO·)—located in inner membrane—causes reduction of the peroxyl radical: cyt.b5red + LOO· → cyt.b5ox + LOO. This secures an interaction of α-TOH with other intermediate, LOOexcepting the LOOH formation. The discussion will be focused on the consequences of ineffective electron transfer to LOO· and excessive oxidative pathway of metabolism of the PUFA (LOO· → LOOH). Assuming the operation of cytochrome b5/α-tocopherol-controlled lipid-radical cycles and considering the role of the cycles in membrane bioenergetics we arrive at a model for effective function of adenine nucleotide translocator and ATP synthesis in mitochondria. This paper summarizes our experimental evidence that the oxidative and non-oxidative pathways of metabolism of PUFA via their respective intermediates occur in the cells. While this fact is not widely appreciated it may be relevant to elucidation of new mechanisms of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clarendon Press, Oxford, pp 237–242

    Google Scholar 

  2. Buettner GR (1993) The pecking order of free radicals and antioxidants:lipid peroxidation, alpha tocopherol and ascorbate. Arch Biochem Biophys 300:535–543

    Article  PubMed  CAS  Google Scholar 

  3. Tappel AL (1962) Studies of the mechanism of vitamin E action. Vitam Horm 20:493–510

    Article  CAS  Google Scholar 

  4. Niki E, Saito T, Kawakami A, Kamiya Y (1984) Inhibition of oxidation of methyl linoleate in solution by vitamin E and vitamin C. J Biol Chem 259:4177–4182

    PubMed  CAS  Google Scholar 

  5. Dmitriev LF, Ivanova MV (1994) Interaction of tocopherol with peroxyl radicals does not lead to the formation of lipid hydroperoxides in liposomes. Chem Phys Lipids 69(1):35–39

    Article  PubMed  CAS  Google Scholar 

  6. Anderson JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nature Rev Neurosci 5:S18–S25

    Google Scholar 

  7. Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, Kowall NW, Brown RH Jr, Beal MF (1997) Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 69:2064–2074

    Article  PubMed  CAS  Google Scholar 

  8. Rokai L, Prokai-Tatrai K, Perjesi P, Zharikova AD, Perez EJ, Liu R, Simpkins JW (2003) Quinol-based cyclic antioxidant mechanism in estrogen neuroprotection. Proc Natl Acad Sci USA 100:11741–11746

    Article  CAS  Google Scholar 

  9. Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 56:1609–1623

    Article  Google Scholar 

  10. Yim HS, Kang JH, Chock PB, Stadtman ER, Yim MB (1997) A familial amyotro-phic lateral sclerosis-associated A4V Cu,Zn-superoxide dismutase mutant has a lower Kmfor hydrogen peroxide. Correlation between clinical severity and the Km value. J Biol Chem 272:8861–8863

    Article  PubMed  CAS  Google Scholar 

  11. El Kossi MM, Zakhary MM (2000) Oxidative stress in the context of acute cerebrovascular stroke. Stroke 31:1879–1889

    Google Scholar 

  12. Cuzzocrea S, Riley DP, Caputi AP, Salvemini D (2001) Antioxidant therapy: a newpharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev 53:135–159

    Google Scholar 

  13. Adibhatla RM, Hatcher JF, Dempsey RJ (2003) Phospholipase A2, hydroxyl radicals, and lipid peroxidation in transient cerebral ischemia. Antioxid Redox Signal 5:647–654

    Article  PubMed  CAS  Google Scholar 

  14. Hall NC, Carney JM, Cheng MS, Butterfield DA (1995) Ischemia/reperfusioninduced changes in membrane proteins and lipids of gerbil cortical synaptosomes. Neuroscience 64:81–89

    Article  PubMed  CAS  Google Scholar 

  15. Koppal T, Drake J, Yatin S, Jordan B, Varadarajan S, Bettenhausen L, Butterfield DA (1999) Peroxynitrite-induced alterations in synaptosomal membrane proteins: insight intooxidative stress in Alzheimer’s disease. J Neurochem 72:310–317

    Article  PubMed  CAS  Google Scholar 

  16. Won MH, Kang TC, Jeon GS, Lee JC, Kim DY, Choi EM, Lee KH, Choi CD, Chung MH, Cho SS (1999) Immunohistochemical detection of oxidative DNA damageinduced by ischemia-reperfusion insults in gerbil hippocampus in vivo. Brain Res 836:70–78

    Article  PubMed  CAS  Google Scholar 

  17. Rayner BS, Duong TT, Myers SJ, Witting PK (2006) Protective effect of a syntheticantioxidant on neuronal cell apoptosis resulting from experimental hypoxia re-oxygenationinjury. J Neurochem 97:211–221

    Article  PubMed  CAS  Google Scholar 

  18. Williams RJP (1985) The necessary and desirable production of radicals in biology. Phil Trans R Soc Lond B 311:593–603

    Google Scholar 

  19. Storz P (2006) Reactive oxygen species-mediated mitochondria-to nucleus signaling: a key to aging and radical-caused diseases. Sci STKE 2006(332):re3

  20. Dmitriev LF (1995) A novel enzymatic mechanism of protective effect of tocopherol inbiological membranes. Redox Rep 1:299–301

    CAS  Google Scholar 

  21. Schonfeld P, Schild L, Bohnensack R (1996) Expression of the ADP/ATP carrier andexpansion of the mitochondrial (ATP + ADP) pool contribute to postnatal maturation of therat heart. Eur J Biochem 241:895–900

    Article  PubMed  CAS  Google Scholar 

  22. Tsujimoto Y, Nakagawa T, Shimizu S (2006) Mitochondrial membrane permeabilitytransition and cell death. Biochim Biophys Acta 1757(9–10):1297–1300

    PubMed  CAS  Google Scholar 

  23. Smeitink JA, Zeviani M, Turnbull DM, Jacobs HT (2006) Mitochondrial medicine:a metabolic perspective on the pathology of oxidative phosphorylation disorders. Cell Metab 3:9–13

    Article  PubMed  CAS  Google Scholar 

  24. Parihar MS, Brewer GJ (2007) Mitoenergetic failure in Alzheimer disease. Am J Physiol Cell Physiol 292(1):C8–C23

    Article  PubMed  CAS  Google Scholar 

  25. Bouman J, Slater EC (1957) The role of α-tocopherol in the respiratory chain. Bioch Biophys Acta 26:624–633

    Article  CAS  Google Scholar 

  26. Dmitriev LF (1998) Cytochrome b5 and tocopherol provide functions of lipid-radical cyclesand energy conversion in membranes. Biochemistry (Mosc) 63:1233–1236

    CAS  Google Scholar 

  27. Constantinescu A, Han D, Packer L (1993) Vitamin E recycling in human erythrocytemembranes. J Biol Chem 268:10906–10913

    PubMed  CAS  Google Scholar 

  28. Dmitriev LF, Davletshina LN, Ivanov II, Rubin AB (1985) Correlation between oxidative phosphorylation and lipid peroxidation. Membr Cell Biol (in Russian) 2:795–799

    CAS  Google Scholar 

  29. Gennis RB (1989) Biomembranes: molecular structure and function. Springer-Verlag, N Y

    Google Scholar 

  30. Baron JM, Zwadlo-Klarwasser G, Jugert F, Hamann W, Rubben A, Mukhtar H andMerk HF (1998) Cytochrome P450 1B1: a major P450 isoenzyme in human bloodmonocytes and macrophage subsets. Biochem Pharmacol 56:1105–1110

    Article  PubMed  CAS  Google Scholar 

  31. Porter TD (2002) The role of cytochrome b5 in cytochrome P-450 reactons. J Bioch Mol Toxicol 16:311–316

    Article  CAS  Google Scholar 

  32. Brand MD, Chien LF, Ainscow EK, Rolfe DFS, Porter RK (1994) The causes and functions of mitochondrial proton leak. Biochim Biophys Acta 1187:132–139

    Article  PubMed  CAS  Google Scholar 

  33. Brand MD, Pakay JL, Ocloo A, Kokoszka J, Wallace DC, Brookes PS, Cornwall EJ (2005) The basal proton conductance of mitochondria depends on adenine nucleotidetranslocase content. Biochem J 392:353–362

    Article  PubMed  CAS  Google Scholar 

  34. Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects, and activation ofuncoupling proteins. Free Radical Biol Med 37:755–767

    Article  CAS  Google Scholar 

  35. Esteves TC, Brand MD (2005) The reactions catalyzed by the mitochondrial uncoupling proteins UCP2 and UCP3. Biochim Biophys Acta 1709:35–44

    Article  PubMed  CAS  Google Scholar 

  36. Skulachev VP (1998) Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta 1363:100–124

    Google Scholar 

  37. Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ, Portero-Otin M, Pamplona R, Vidal-Puig A, Wang S, Roebuck SJ, Brand MD (2003) A signaling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J 22:4103–4110

    Article  PubMed  CAS  Google Scholar 

  38. Kholodenko B, Zilinskiene V, Borutaite V, Ivanoviene L, Toleikis A, Praskevicius A (1987) The role of adenine nucleotide translocators in regulation of oxidative phosphorylation in heart mitochondria. FEBS Lett 223:347–250

    Article  Google Scholar 

  39. Russel JW, Golovoy D, Vincent AM, Mahendru P, Olzmann JA, Mentzer A, Feldman EL (2002) High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 16:1738–1748

    Article  Google Scholar 

  40. Hoffmann B, Stockl A, Schlame M, Beyer K, Klingenberg M (1994) The reconstituted ADP/ATP carrier activity has an absolute requirement for cardiolipin as shown in cysteine mutants. J Biol Chem 269:1940–1944

    PubMed  CAS  Google Scholar 

  41. Beyer K, Nuscher B (1996) Specific cardiolipin binding interferes with labeling of sulfhydryl residues in the ADP/ATP carrier protein from beef heart mitochondria. Biochemistry 35:15784–15790

    Article  PubMed  CAS  Google Scholar 

  42. Abramovitch DA, Marsh D, Powell GL (1990) Activation of beef-heart cytochrome c oxidase by cardiolipin and analogs of cardiolipin. Biochim Biophys Acta 1029:34–42

    Google Scholar 

  43. Shidoji Y, Hayashi K, Komura S, Ohishi N, Yagi K (1999) Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation. Bioch Bioph Res Comn 264:343–347

    Article  CAS  Google Scholar 

  44. Constantini P, Belzacq AS, Vieira HL, Larochette N, de Pablo MA, Zamzami N, Susin SA, Brenner C, Kroemer G (2000) Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene 19:307–314

    Article  CAS  Google Scholar 

  45. Sen T, Sen N, Tripathi G, Chatterjee U, Chakrabarti S (2006) Lipid peroxidation associated cardiolipin loss and membrane depolarization in rat brain mitochondria. Neurochem Int 49:20–27

    Article  PubMed  CAS  Google Scholar 

  46. Quentin E, Averet N, Guerin B, Rigoulet M (1994) Temperature dependence of the coupling efficiency of rat liver oxidative phosphorylation: Role of adenine nucleotide translocator. Bioch Bioph Res Comn 202:816–821

    Article  CAS  Google Scholar 

  47. Rottenberg H (1978) Phase transition and coupling in energy transducing membranes. FEBS Lett 94:295–297

    Article  PubMed  CAS  Google Scholar 

  48. Archakov AI, Karyakin AV, Skulachev VP (1974) Intermembrane electron transfer in mitochondrial and microsomal systems. FEBS Lett 39:239–242

    Article  PubMed  CAS  Google Scholar 

  49. Taskinalp O, Aktas RG, Cigali B, Kutlu AK (2000) Immunohistochemical demon-stration of cytochrome oxidase in different parts of the central nervous system: a compa-rative experimental study. Anat Histol Embryol 29:345–349

    Article  PubMed  CAS  Google Scholar 

  50. Rottenberg H (1983) Uncoupling of oxidative phosphorylation in rat liver mitochondria by general anesthetics. Proc Nat Acad Sci USA 80:3313–3317

    Article  PubMed  CAS  Google Scholar 

  51. Dmitriev LF (2001) Activity of key enzymes in microsomal and mitochondrial membranes depends on the redox reactions involving lipid radicals. Membr Cell Biol 14:649–662

    PubMed  CAS  Google Scholar 

  52. Skulachev VP (2006) Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis 11:473–485

    Article  PubMed  CAS  Google Scholar 

  53. Miyoshi N, Oubrahim H, Chock PB, Stadtman ER (2006) Age-dependent cell death and the role of ATP in hydrogen peroxide-induced apoptosis and necrosis. Proc Nat Acad Sci USA 103:1727–1731

    Article  PubMed  CAS  Google Scholar 

  54. Dmitriev LF, Ivanova MV, Ivanov II (1990) ATP synthesis in mitochondria: interacti-on of the redox chains of outer and inner membranes. Proc Russian Acad Sci 312:986–989

    CAS  Google Scholar 

  55. Bobba A, Atlante A, Giannattasio S, Sgaramella G, Calissano P, Marra E (1999) Early release and subsequent caspase-mediated degradation of cytochrome c in apoptotic cerebellar granule cells. FEBS Lett 457:126–130

    Article  PubMed  CAS  Google Scholar 

  56. Wright MV, Kuhn TB (2002) CNS neurons express two distinct plasma membrane electron transport systems implicated in neuronal viability. J Neurochem 83(3):655–664

    Article  PubMed  CAS  Google Scholar 

  57. Villalba JM, Navas P (2000) Plasma membrane redox system in the control of stress-induced apoptosis. Antioxid Redox Signal 2:213–230

    PubMed  CAS  Google Scholar 

  58. Golubev AG (1996) The other side of metabolism. Biochemistry (Mosc) 61:2018–2039

    CAS  Google Scholar 

  59. Markesbery WR, Lovell MA (1998) Four-hydroxynonenal, a product of lipid peroxida- tion, is increased in the brain in Alzheimer’s disease. Neurobiol Aging 19:33–36

    Article  PubMed  CAS  Google Scholar 

  60. Calingasan NY, Uchida K, Gibson GE (1999) Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s disease. J Neurochem 72:751–756

    Article  PubMed  CAS  Google Scholar 

  61. Lovell MA, Xie C, Markesbery WR (2001) Acrolein is increased in Alzheimer’s disease brain and is toxic to primary hippocampal cultures. Neurobiol Aging 22:187–194

    Article  PubMed  CAS  Google Scholar 

  62. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydro-xynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  PubMed  CAS  Google Scholar 

  63. Kehrer JP, Biswal SS (2000) The molecular effects of acrolein. Toxicol Sci 57:6–15

    Article  PubMed  CAS  Google Scholar 

  64. Uchida K (2003) 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 42:318–343

    Article  PubMed  CAS  Google Scholar 

  65. Chen JJ, Bertrand H, Yu BP (1995) Inhibition of adenine nucleotide translocator by lipid peroxidation products. Free Radic Biol Med 19:583–590

    Article  PubMed  CAS  Google Scholar 

  66. Luo J, Shi R (2005) Acrolein induces oxidative stress in brain mitochondria. Neuroch Int 46:243–252

    Article  CAS  Google Scholar 

  67. Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14

    Article  PubMed  CAS  Google Scholar 

  68. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    Article  PubMed  CAS  Google Scholar 

  69. Robinson MB, Djali S, Buchhalter JR (1993) Inhibition of glutamate uptake with l-trans-pyrrolidine-2,4-dicarboxylate potentiates glutamate toxicity in primary hippocampal cultures. J Neurochem 61:2099–2103

    Article  PubMed  CAS  Google Scholar 

  70. Rothstein JD, Jin L, Dykes-Hoberg M, Kuncl RW (1993) Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci USA 90:6591–6595

    Article  PubMed  CAS  Google Scholar 

  71. Lievens JC, Bernal F, Forni C, Mahy N, Kerkerian-Le Goff L (2000) Characterization of striatal lesions produced by glutamate uptake alteration:cell death, reactive gliosis, and changes in GLT1 and GADD45 mRNA expression. Glia 29:222–232

    Article  PubMed  CAS  Google Scholar 

  72. Lauderback CM, Hackett JM, Huang FF, Keller JN, Szweda LI, Markesbery WR, Butterfeld DA (2001) The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: the role of Ab1–42. J Neurochem 78:413–416

    Article  PubMed  CAS  Google Scholar 

  73. Akhand AA, Hossain K, Kato M, Miyata T, Du J, Suzuki H, Kurokawa K, Nakasima I (2001) Glyoxal and methylglyoxal induce aggregation and inactivation of ERK in human endothelial cells. Free Radic Biol Med 31:20–30

    Article  PubMed  CAS  Google Scholar 

  74. Nohara Y, Usui T, Kinoshita T, Watanabe M (2002) Generation of superoxide anions during the reaction of guanidino compounds with methylglyoxal. Chem Pharm Bull 50:179–184

    Article  PubMed  CAS  Google Scholar 

  75. Szent-Gyorgyi A (1968) Bioelectronics. Academic Press, NY

  76. Vander Jagt DL, Hunsaker LA (2003) Methylglyoxal metabolism and diabetic complica tions* roles of aldose reductase, glyxalase-I, betaine aldehyde dehydrogenase and 2-oxoalde- hyde dehydrogenase. Chem Biol Interact 143/144:341–351

    Article  CAS  Google Scholar 

  77. Thornalley PJ (2003) Glyoxalase I – structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31(6):1343–1348

    Article  PubMed  CAS  Google Scholar 

  78. Agadjanyan ZS, Dugin SF, Dmitriev LF (2006) Cumene peroxide and Fe2+-ascor-bate-induced lipid peroxidation and effect of phosphoglucose isomerase. Mol Cell Biochem 289(1–2):49–53

    Article  PubMed  CAS  Google Scholar 

  79. Gregor W, Staniek K, Nohl H, Gille L (2006) Distribution of tocopheryl quinone in mitochondrial membranes and interference with ubiquinone-mediated electron transfer. Bioch Pharm 71:1581–1601

    Article  CAS  Google Scholar 

  80. Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Aggarwal N, Wilson RS, Scherr PA (2002) Dietary intake of antioxidant nutrients and the risk of incident Alzheimer’s disease in a biracial community study. JAMA 287:3230–3237

    Article  PubMed  CAS  Google Scholar 

  81. Engelhart MJ, Geerlings MI, Ruitenberg A, van Swieten JC, Hofman A, Witteman JC, Breteler MM (2002) Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 287:3223–3229

    Article  PubMed  CAS  Google Scholar 

  82. Schwedhelm E, Maas R, Troost R, Boger RH (2003) Clinical pharmacokinetics of anti- oxidants and their impact on systemic oxidative stress. Clin Pharmacokinet 42:437–459

    Article  PubMed  CAS  Google Scholar 

  83. Morris MC, Evans DA, Tangney CC, Bienias JL, Wilson RS, Aggarwal NT, Scherr PA (2005) Relation of the tocopherol forms to incident Alzheimer disease and to cognitive change. Am J Clin Nutr 81:508–514

    PubMed  CAS  Google Scholar 

  84. Sakai ТJ (1976) Activation of cyclic AMP phosphodiesterase by a new vitamin E derivative. Cyclic Nucleotide Res 2:163–170

    CAS  Google Scholar 

  85. Min KC, Kovall RA, Hendrickson WA (2003) Crystal structure of human alpha-tocophe-rol transfer protein bound to its ligand:implications for ataxia with vitamin E deficiency. Proc Natl Acad Sci USA 100:14713–14718

    Article  PubMed  CAS  Google Scholar 

  86. Gohil K, Godzdanker R, O’Roark E, Schock BC, Kaini RR, Packer L, Cross CE, Traber MG (2004) α-Tocopherol transfer protein deficiency in mice causes multi-organ deregulation of gene networks and behavioral deficits with age. Ann NY Acad Sci 1031:109–126

    Article  PubMed  CAS  Google Scholar 

  87. Mattson MP (1997) Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 77:1081–1132

    PubMed  CAS  Google Scholar 

  88. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiologic al functions and human disease. Int J Bioch Cell Biol 39(1):44–84

    Article  CAS  Google Scholar 

  89. Plewka A, Kaminski M, Plewka D (1998) Ontogenesis of hepatocyte respiration processes in relation to rat liver cytochrome P450-dependent monooxygenase system. Mech Ageing Dev 105:197–207

    Article  PubMed  CAS  Google Scholar 

  90. Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of Abeta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15:1437–1449

    Article  PubMed  CAS  Google Scholar 

  91. Calabrese V, Maines MD (2006) Antiaging medicine: antioxidants and aging. Antioxid Redox Signal 8:444–447

    Article  PubMed  CAS  Google Scholar 

  92. Howes RM (2006) The free radical fantasy. A panoply of paradoxes. Ann NY Acad Sci 1067:22–26

    Article  PubMed  CAS  Google Scholar 

  93. Giordano V, Peluso G, Iannuccelli M, Benatti P, Nicolai R, Calvani M (2007) Systemic and brain metabolic dysfunction as a new paradigm for approaching Alzheimer’s dementia. Neurochem Res 32(4–5):555–567

    Article  PubMed  CAS  Google Scholar 

  94. Yarian CS (2005) Aconitase and ATP synthase are targets of MDA modification and undergo an age-related decrease in activity in mouse heart mitochondria. Bioch Bioph Res Comn 330:151–156

    Article  CAS  Google Scholar 

  95. Kang JH (2003) Modification and inactivation of human Cu,Zn-superoxide dismutase by methylglyoxal. Mol Cells 15(2):194–199

    PubMed  CAS  Google Scholar 

  96. Kang JH (2006) J Oxidative modification of human ceruloplasmin by methylglyoxal: an in vitro study. J Biochem Mol Biol 39(3):335–338

    PubMed  CAS  Google Scholar 

  97. Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Merchant M, Markesbery WR, Butterfield DA (2006) Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol Aging 27(11):1564–1576

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid F. Dmitriev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dmitriev, L.F. Shortage of Lipid-radical Cycles in Membranes as a Possible Prime Cause of Energetic Failure in Aging and Alzheimer Disease. Neurochem Res 32, 1278–1291 (2007). https://doi.org/10.1007/s11064-007-9322-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9322-0

Keywords

Navigation