Skip to main content
Log in

Degradation of Spectrin via Calpains in the Ventral Horn after Transient Spinal Cord Ischemia in Rabbits

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In the present study, we investigated chronological changes of μ-calpain, m-calpain and cleaved spectrin αII immunoreactivity in the ventral horn after transient spinal cord ischemia to investigate relationship between calpains and vulnerability to ischemia using abdominal aorta occlusion model in rabbits. Spinal cord sections at the level of L7 were immunostained with calpains and cleaved spectrin αII monoclonal antibodies. μ-Calpain and m-calpain immunoreactivity was significantly increased in the ischemic ventral horn at 30 min and 1 h after ischemia/reperfusion, respectively. Thereafter, they were decreased with time after ischemia/reperfusion: at 48 h after ischemia, their immunoreactivities nearly disappeared in the ischemic ventral horn. Cleaved spectrin αII immunoreactivity was significantly increased in the ventral horn of spinal cord at 12 h after ischemia/reperfusion, and thereafter, its immunoreactivity was decreased with time after ischemia/reperfusion. In addition, spectrin αII protein level (280 kDa) was decreased from 12 h after ischemia/reperfusion; in contrast, cleaved spectrin αII protein level (150 kDa) was significantly increased at 12 h after ischemia/reperfusion. In conclusion, our observations in this study indicate that calpain is associated with neuronal degeneration in the ventral horn at early time after transient spinal cord ischemia via the proteolysis of spectrin αII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hayashi T, Sakurai M, Abe K, Sadahiro M, Tabayashi K, Itoyama Y (1998) Apoptosis of motor neurons with induction of caspases in the spinal cord after ischemia. Stroke 29:1007–1012

    PubMed  CAS  Google Scholar 

  2. Kiyoshima T, Fukuda S, Matsumoto M, et al (2003) Lack of evidence for apoptosis as a cause of delayed onset paraplegia after spinal cord ischemia in rabbits. Anesth Analg 96:839–846

    PubMed  Google Scholar 

  3. Brewer LA 3rd, Fosburg RG, Mulder GA, Verska JJ (1972) Spinal cord complications following surgery for coarctation of the aorta. A study of 66 cases. J Thorac Cardiovasc Surg 64:368–381

    PubMed  Google Scholar 

  4. Crawford ES, Snyder DM, Cho GC, Roehm JO, Jr (1978) Progress in treatment of thoracoabdominal and abdominal aortic aneurysms involving celiac, superior mesenteric, and renal arteries. Ann Surg 188:404–422

    Google Scholar 

  5. Jarzem PF, Kostuik JP, Filiaggi M, Doyle DJ, Ethier R, Tator CH (1991) Spinal cord distraction: an in vitro study of length, tension, and tissue pressure. J Spinal Disord 4:177–182

    PubMed  CAS  Google Scholar 

  6. Choi DW (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11:465–469

    Article  PubMed  CAS  Google Scholar 

  7. Siesjo BK (1981) Cell damage in the brain: a speculative synthesis. J Cerb Blood Flow Metab 1:155–185

    CAS  Google Scholar 

  8. Baudry M, Bundman M, Smith E, Lynch G (1981) Micromolar calcium stimulates proteolysis and glutamate binding in rat brain synaptic membranes. Science 212:937–938

    PubMed  CAS  Google Scholar 

  9. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    PubMed  CAS  Google Scholar 

  10. Fukuda T, Adachi E, Kawashima S, Yoshiya I, Hashimoto PH (1990) Immunohistochemical distribution of calcium-activated neutral proteinases and endogenous CANP inhibitor in the rabbit hippocampus. J Comp Neurol 302:100–109

    Article  PubMed  CAS  Google Scholar 

  11. Lynch G (1998) Memory and the brain: unexpected chemistries and a new pharmacology. Neurobiol Learn Mem 70:82–100

    Article  PubMed  CAS  Google Scholar 

  12. Chan SL, Mattson MP (1999) Caspase and calpain substrates: roles in synaptic plasticity and cell death. J Neurosci Res 58:167–190

    Article  PubMed  CAS  Google Scholar 

  13. Carlson GD, Gorden C (2002) Current developments in spinal cord injury research. Spine J 2:116–128

    Article  PubMed  Google Scholar 

  14. Siman R, Baudry M, Lynch G (1984) Brain fodrin: substrate for calpain I, an endogenous calcium-activated protease. Proc Natl Acad Sci USA 81:3572–3576

    Article  PubMed  CAS  Google Scholar 

  15. Malik MN, Femko MD, Iqbal K, Wisniewski HM (1983) Purification and characterization of two forms of Ca2+-activated neutral protease from calf brain. J Biol Chem 258:8955–8962

    PubMed  CAS  Google Scholar 

  16. Zimmerman UJP, Schlaepfer WW (1982) Characterization of a brain calcium-activated protease that degrades neurofilament proteins. Biochemistry 21:3977–3983

    Article  PubMed  CAS  Google Scholar 

  17. Chen MJ, Yap YW, Choy MS, et al (2006) Early induction of calpains in rotenone-mediated neuronal apoptosis. Neurosci Lett 397:69–73

    Article  PubMed  CAS  Google Scholar 

  18. Yoon S, Choi J, Huh JW, Hwang O, Kim D (2006) Calpain activation in okadaic-acid-induced neurodegeneration. Neuroreport 17:689–692

    Article  PubMed  CAS  Google Scholar 

  19. Czogalla A, Sikorski AF (2005) Spectrin and calpain: a ‘target’ and a ‘sniper’ in the pathology of neuronal cells. Cell Mol Life Sci 62:1913–1924

    Article  PubMed  CAS  Google Scholar 

  20. Li Z, Hogan EL, Banik NL (1996) Role of calpain in spinal cord injury: increased calpain immunoreactivity in rat spinal cord after impact trauma. Neurochem Res 21:441–448

    PubMed  CAS  Google Scholar 

  21. Ray SK, Shields DC, Saido TC, et al (1999) Calpain activity and translational expression increased in spinal cord injury. Brain Res 816:375–380

    Article  PubMed  CAS  Google Scholar 

  22. Li M, Ona VO, Chen M, et al (2000) Functional role and therapeutic implications of neuronal caspase-1 and -3 in a mouse model of traumatic spinal cord injury. Neuroscience 99:333–342

    Article  PubMed  CAS  Google Scholar 

  23. Lee JC, Hwang IK, Park SK, et al (2005) Histochemical and electron microscopic study on motoneuron degeneration following transient spinal cord ischemia at normothermic conditions in rabbits. Anat Histol Embryol 34:252–257

    Article  PubMed  Google Scholar 

  24. Simpson RK, Jr, Robertson CS, Goodman JC (1990) Spinal cord ischemia-induced elevation of amino acids: extracellular measurement with microdialysis. Neurochem Res 15:635–639

    Google Scholar 

  25. Linn CP, Christensen BN (1992) Excitatory amino acid regulation of intracellular Ca in isolated catfish cone horizontal cells measured under voltage- and concentration-clamp conditions. J Neurosci 12:2156–2164

    PubMed  CAS  Google Scholar 

  26. Sorimachi Y, Harada K, Saido TC, Ono T, Kawashima S, Yoshida K (1997) Downregulation of calpastatin in rat heart after brief ischemia and reperfusion. J Biochem (Tokyo) 122:743–748

    CAS  Google Scholar 

  27. Sakurai M, Nagata T, Abe K, Horinouchi T, Itoyama Y, Tabayashi K (2003) Survival and death-promoting events after transient spinal cord ischemia in rabbits: induction of Akt and caspase3 in motor neurons. J Thorac Cardiovasc Surg 125:370–377

    Article  PubMed  CAS  Google Scholar 

  28. Banik NL, Shields DC, Ray S, et al (1998) Role of calpain in spinal cord injury: effects of calpain and free radical inhibitors. Ann NY Acad Sci 844:131–137

    Article  PubMed  CAS  Google Scholar 

  29. Ray SK, Banik NL (2003) Calpain and its involvement in the pathophysiology of CNS injuries and diseases: therapeutic potential of calpain inhibitors for prevention of neurodegeneration. Curr Drug Targets CNS Neurol Disord 2:173–189

    Article  PubMed  CAS  Google Scholar 

  30. Bartus RT, Hayward NJ, Elliott PJ, et al (1994) Calpain inhibitor AK295 protects neurons from focal brain ischemia. Effects of postocclusion intra-arterial administration. Stroke 25:2265–2270

    PubMed  CAS  Google Scholar 

  31. Markgraf CG, Velayo NL, Johnson MP, et al (1998) Six-hour window of opportunity for calpain inhibition in focal cerebral ischemia in rats. Stroke 29:152–158

    PubMed  CAS  Google Scholar 

  32. Rami A, Agarwal R, Botez G, Winckler J (2000) mu-Calpain activation, DNA fragmentation, and synergistic effects of caspase and calpain inhibitors in protecting hippocampal neurons from ischemic damage. Brain Res 866:299–312

    Article  PubMed  CAS  Google Scholar 

  33. McCracken E, Hunter AJ, Patel S, Graham DI, Dewar D (1999) Calpain activation and cytoskeletal protein breakdown in the corpus callosum of head-injured patients. J Neurotrauma 16:749–761

    Article  PubMed  CAS  Google Scholar 

  34. Ray SK, Dixon CE, Banik NL (2002) Molecular mechanisms in the pathogenesis of traumatic brain injury. Histol Histopathol 17:1137–1152

    PubMed  CAS  Google Scholar 

  35. Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405:360–364

    Article  PubMed  CAS  Google Scholar 

  36. Saito K, Elce JS, Hamos JE, Nixon RA (1993) Widespread activation of calcium activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration. Proc Natl Acad Sci USA 90:2628–2632

    Article  PubMed  CAS  Google Scholar 

  37. Kakkar R, Raju RV, Sharma RK (1999) Calmodulin-dependent cyclic nucleotide phosphodiesterase (PDE1). Cell Mol Life Sci 55:1164–1186

    Article  PubMed  CAS  Google Scholar 

  38. Mouatt-Prigent A, Karlsson JO, Agid Y, Hirsch EC (1996) Increased M-calpain expression in the mesencephalon of patients with Parkinson’s disease but not in other neurodegenerative disorders involving the mesencephalon: a role in nerve cell death? Neuroscience 73:979–987

    Article  PubMed  CAS  Google Scholar 

  39. Emery E, Aldana P, Bunge MB, et al (1998) Apoptosis after traumatic human spinal cord injury. J Neurosurg 89:911–920

    Article  PubMed  CAS  Google Scholar 

  40. Banik NL, Shields DC, Ray SK, Hogan EL (1999) The pathophysiological role of calpain in spinal cord injury. In: Wang KKW, Yuen P (eds) Calpain pharmacology and toxicology of calcium dependent protease. Taylor and Francis, Philadelphia, pp 211–227

    Google Scholar 

  41. Lee JC, Hwang IK, Cho JH, et al (2004) Expression and changes of calbindin D-28k immunoreactivity in the ventral horn after transient spinal cord ischemia in rabbits. Neurosci Lett 369:145–149

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr Suek Han, Seung Uk Lee and Ms Hyun Sook Kim for their technical help in this study. This work was supported by the MRC program of MOST/KOSEF (R13-2005-022-01002-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moo Ho Won.

Additional information

Jae-Chul Lee and In Koo Hwang equally contribute to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JC., Hwang, I.K., Yoo, KY. et al. Degradation of Spectrin via Calpains in the Ventral Horn after Transient Spinal Cord Ischemia in Rabbits. Neurochem Res 31, 989–998 (2006). https://doi.org/10.1007/s11064-006-9104-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9104-0

Keywords

Navigation