Skip to main content

Advertisement

Log in

The Changes of Cytoskeletal Proteins in Plasma of Acrylamide-Induced Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Acrylamide (ACR) is a known industrial neurotoxic chemical that can induce neurodegeneration. Cytoskeletal protein aggregation is a pathological hallmark of neurodegenerative disorders. This study was an initial exploration on cytoskeletal proteins in plasma as potential biomarkers of ACR neurotoxicity. Low and high ACR groups received 20 mg/kg and 40 mg/kg ACR by intraperitoneal injection in adult Wistar rats and control group received physiological saline. Rats were all killed after 8 weeks to evaluate the levels of neurofilament(NF)-L, NF-M, NF-H, β-actin, α-tubulin, β-tubulin, tau, MAP2 proteins in plasma using both SDS-PAGE and western blotting. Compared with the control, the levels of NF-L, NF-M, NF-H, β-actin, tau, MAP2 proteins decreased and the level of α-tubulin increased in high ACR group, the levels of α-tubulin, β-tubulin and MAP2 increased in low ACR group. The results suggested that the changes of these proteins might be relevant to the neurotoxicity of ACR. Some of the cytoskeletal proteins in plasma might be used as marker of biological effect in ACR induced neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  1. Friedman M (2003) Chemistry, biochemistry, and safety of acrylamide. J Agric Food Chem 51:4506–4526

    Google Scholar 

  2. LoPachin RM (2004) The changing view of acrylamide neurotoxicity. Neurotoxicology 25:617–630

    Article  PubMed  CAS  Google Scholar 

  3. Tareke E, Rydberg P, Karlsson P, Eriksson S, Tomqvist M (2002) Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem 50:4998–5006

    Article  PubMed  CAS  Google Scholar 

  4. Spencer PS, Schaumburg HH (1974a) A review of acrylamide neurotoxicity. Part I. Properties, uses and human exposure. Can J Neurol Sci 1:151–169

    Google Scholar 

  5. Spencer PS, Schaumburg HH (1974b) A review of acrylamide neurotoxicity. Part II. Experimental animal neurotoxicity and pathologic mechanisms. Can J Neurol Sci 1:170–192

    Google Scholar 

  6. Deng H, He S, Zhang S (1993) Quantitative measurements of vibration threshold in health adults and acrylamide workers. Int Arch Occup Environ Health 65:53–56

    Article  PubMed  CAS  Google Scholar 

  7. Spencer PS, Schaumburg HH (1977a) Ultrastructural studies of the dyingback process. III. The evolution of experimental peripheral giant axonal degeneration. J Neuropathol Exp Neurol 36:276–299

    Article  CAS  Google Scholar 

  8. Spencer PS, Schaumburg HH (1977b) Ultrastructural studies of the dyingback process. IV. Differential vulnerability of PNS and CNS fibers in experimental central-peripheral distal axonopathy. J Neuropathol Exp Neurol 36:300–320

    Article  CAS  Google Scholar 

  9. LoPachin RM (2002) The role of fast axonal transport in acrylamide pathophysiology: Mechanism or epiphenomenon? Neurotoxicology 23:253–257

    Article  PubMed  CAS  Google Scholar 

  10. Sickles DW, Stone JD, Friedman MA (2002) Fast axonal transport: A site of acrylamide neurotoxicity? Neurotoxicology 23:223–251

    Article  PubMed  CAS  Google Scholar 

  11. Jellinger KA (2001) Cell death mechanisms in neurodegeneration. J Cell Mol Med 5:1–17

    Article  PubMed  CAS  Google Scholar 

  12. Ramaekers FC, Bosman FT (2004) The cytoskeleton and disease. J Pathol 204:351–354

    Article  PubMed  CAS  Google Scholar 

  13. LoPachin RM, Ross JF Reid ML, Das S, Mansukhani S, Lehning EJ (2002) Neurological evaluation of toxic axonopathies in rats: Acrylamide and 2,5–hexanedione. Neurotoxicology 23:95–110

    Article  PubMed  CAS  Google Scholar 

  14. Yu SF, Zhao XL, Zhang TL, Yu LH, Li SX, Cui N, Han XY, Zhu ZP, Xie KQ (2005) Acrylamide-induced changes in the neurofilament protein of rat cerebrum fractions. Neurochem 30:1079–1085

    Article  CAS  Google Scholar 

  15. Giuffrida A, Rodriguez de Fonseca F, Piomeli D (2000) Quantification of bioactive acylethanolamides in rat plasma by electrospray mass spectrometry. Anal Biochem 280:87–93

    Article  PubMed  CAS  Google Scholar 

  16. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  17. Lehning EJ, Jortner BS, Fox JH, Arezzo JC, Kitano T, LoPachin RM (2000) Diketone peripheral neuropathy: I. Quantitative morphometric analyses of axonal atrophy and swelling. Toxicol Appl Pharmacol 165:127–140

    Article  PubMed  CAS  Google Scholar 

  18. LoPachin RM, Lehning EJ (1994) Acrylamide-induced distal axon degeneration: a proposed mechanism of action. NeuroToxicology 15:247–260

    PubMed  CAS  Google Scholar 

  19. LoPachin RM, Balaban CD, Ross JF (2003) Acrylamide axonopathy revisited. Toxicol Appl Pharmacol 188:135–153

    Article  PubMed  CAS  Google Scholar 

  20. LoPachin RM, Ross JF, Lehning EJ (2002a) Nerve terminals as the primary site of acrylamide action. NeuroToxicology 23:43–59

    Article  CAS  Google Scholar 

  21. LoPachin RM, Ross JF, Reid ML, Dasgupta S, Mansukhani S, Lehning EJ (2002b) Neurological evaluation of toxic axonopathies in rats: acrylamide and 2,5-hexanedione. NeuroToxicology 23:95–110

    Article  CAS  Google Scholar 

  22. LoPachin RM, Schwarcz AI, Gaughan CL, Mansukhani S, Das S (2004) In vivo and in vitro effects of acrylamide on synaptosomal neurotransmitter uptake and release. NeuroToxicology 25:349–363

    Article  PubMed  CAS  Google Scholar 

  23. Galbraith JA, Gallant PE (2000) Axonal transport of tubulin and actin. J Neurocytol 29:889–911

    Article  PubMed  CAS  Google Scholar 

  24. Lariviere RC, Julien JP (2004) Functions of intermediate filaments in neuronal development and disease. J Neurobiol 58:131–148

    Article  PubMed  CAS  Google Scholar 

  25. Lee MK, Xu Z, Wong PC, Cleveland DW (1993) Neurofilaments are obligate heteropolymers in vivo. J Cell Biol 122:1337–1350

    Article  PubMed  CAS  Google Scholar 

  26. Lee MK, Cleveland DW (1994) Neurofilament function and dysfunction: involvement in axonal growth and neuronal disease. Curr Opin Cell Biol 6:34–40

    Article  PubMed  CAS  Google Scholar 

  27. Julien JP (1999) Neurofilament functions in health and disease. Curr Opin Neurobiol 9:554–560

    Article  PubMed  CAS  Google Scholar 

  28. Brady ST (1993) Motor neurons and neurofilaments in sickness and in health. Cell 73:1–3

    Article  PubMed  CAS  Google Scholar 

  29. Shaw G, Yang C, Ellis R, Anderson K, Parker Mickle J, Scheff S, Pike B, Anderson DK, Howland DR (2005) Hyperphosphorylated neurofilament NF-H is a serum biomarker of axonal injury. Biochem Biophys Res Commun 336:1268–1277

    Article  PubMed  CAS  Google Scholar 

  30. Ackerley S, Thornhill P, Grierson AJ, Brownlees J, Anerton BH, Leigh PN, Shaw CE, Miller CCJ (2003) Neurofilament heavy chain side arm phosphorylation regulates axonal transport of neurofilaments. J Cell Biol 161:489–495

    Article  PubMed  CAS  Google Scholar 

  31. Jacomy H, Zhu Q, Couillard-Despres S, Beaulieu JM, Julien JP, (1999) Disruption of type IV intermediate filament network in mice lacking the neurofilament medium and heavy subunits, J. Neurochem 73:972–984

    Article  CAS  Google Scholar 

  32. Dehmelt L, Halpain S (2004) Actin and microtubules in neurite initiation: are MAPs the missing link? J Neurobiol 58:18–33

    Article  PubMed  CAS  Google Scholar 

  33. Andrieux A, Salin PA, Job D (2004) A role for microtubules in mental diseases? Pathol Biol (Paris) 52:89–92

    CAS  Google Scholar 

  34. Baas PW (1999) Microtubules and neuronal polarity: lessons from mitosis Neuron 22:23–31

    Article  PubMed  CAS  Google Scholar 

  35. Kobayashi N, Mundel P (1998) A role of microtubules during the formation of cell processes in neuronal and non-neuronal cells. Cell Tissue Res 291:163–174

    Article  PubMed  CAS  Google Scholar 

  36. Laferriere NB, MacRae TH, Brown DL (1997) Tubulin synthesis and assembly in differentiating neurons. Biochem Cell Biol 75:103–117

    Article  PubMed  CAS  Google Scholar 

  37. Cleveland DW, Hwo SY, Kirschner MW (1977) Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116:207–225

    Article  PubMed  CAS  Google Scholar 

  38. Garcia ML, Cleveland DW (2001) Going new places using an old MAP: tau, microtubules and human neurodegenerative disease. Curr Opin Cell Biol 13:41–48

    Article  PubMed  CAS  Google Scholar 

  39. Bitsch A, Horn C, Kemmling Y, Seipelt M, Hellenbrand U, Stiefel M, Ciesielczyk B, Cepek L, Bahn E, Ratzka P, Prange H, Otto M (2002) Serum tau protein level as a marker of axonal damage in acute ischemic stroke. Eur Neurol 47:45–51

    Article  PubMed  CAS  Google Scholar 

  40. Teunissen CE, Dijkstra C, Polman C (2005) Biological markers in CSF and blood for axonal degeneration in multiple sclerosis. Lancet Neurol 4:32–41

    Article  PubMed  Google Scholar 

  41. Semra YK, Seidi OA, Sharief MK (2002) Heightened intrathecal release of axonal cytoskeletal proteins in multiple sclerosis is associated with progressive disease and clinical disability. J Neuroimmunol 122:132–139

    Article  PubMed  CAS  Google Scholar 

  42. Sussmuth SD, Reiber H, Tumani H (2001) Tau protein in cerebrospinal fluid (CSF): a blood-CSF barrier related evaluation in patients with various neurological diseases. Neurosci Lett 300:95–98

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the Ministry of Science and Technology of China (No. 2002CB512907), and National Natural Science Fund of China (No. 30271138), and Young Excellence Fund of Shandong Province, China (No. 02B5080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sufang Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, C., Xie, K., Song, F. et al. The Changes of Cytoskeletal Proteins in Plasma of Acrylamide-Induced Rats. Neurochem Res 31, 751–757 (2006). https://doi.org/10.1007/s11064-006-9079-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9079-x

Keywords

Navigation